/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEGEMM.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/NEON/functions/NEGEMMAssemblyDispatch.h" #include "arm_compute/runtime/TensorAllocator.h" #include "support/ToolchainSupport.h" #include using namespace arm_compute::misc::shape_calculator; namespace arm_compute { NEGEMM::NEGEMM(std::shared_ptr memory_manager) : _memory_group(memory_manager), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _asm_glue(memory_manager), _ma_kernel(), _tmp_a(), _tmp_b(), _original_b(nullptr), _run_vector_matrix_multiplication(false), _run_addition(false), _reshape_b_only_on_first_run(false), _is_prepared(false) { } void NEGEMM::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_THROW_ON(NEGEMM::validate(a->info(), b->info(), (c != nullptr) ? c->info() : nullptr, d->info(), alpha, beta, gemm_info)); // Check if we need to reshape the matrix B only on the first run _is_prepared = false; _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _run_vector_matrix_multiplication = a->info()->dimension(1) < 2; _original_b = b; bool run_optimised = c == nullptr && bool(NEGEMMAssemblyDispatch::validate(a->info(), b->info(), d->info(), alpha, beta, _reshape_b_only_on_first_run)); if(run_optimised) { if(MEMInfo::get_policy() == MemoryPolicy::MINIMIZE) { _asm_glue.configure(a, b, d, alpha, beta, false); } else { _asm_glue.configure(a, b, d, alpha, beta, _reshape_b_only_on_first_run); } ARM_COMPUTE_ERROR_ON(!_asm_glue.is_configured()); } else { if(_run_vector_matrix_multiplication) { // Configure the matrix multiply kernel _mm_kernel.configure(a, b, d, alpha, false); } else { TensorShape shape_tmp_a = a->info()->tensor_shape(); TensorShape shape_tmp_b = b->info()->tensor_shape(); shape_tmp_a.set(0, a->info()->dimension(0) * 4); shape_tmp_a.set(1, std::ceil(a->info()->dimension(1) / 4.0f)); const unsigned int transpose_w = 16 / data_size_from_type(b->info()->data_type()); shape_tmp_b.set(0, b->info()->dimension(1) * transpose_w); shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / static_cast(transpose_w))); TensorInfo info_a = a->info()->clone()->set_tensor_shape(shape_tmp_a).set_is_resizable(true); TensorInfo info_b = b->info()->clone()->set_tensor_shape(shape_tmp_b).set_is_resizable(true); _tmp_a.allocator()->init(info_a); _tmp_b.allocator()->init(info_b); // Manage intermediate buffers _memory_group.manage(&_tmp_a); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_tmp_b); } int m = a->info()->dimension(1); int n = b->info()->dimension(0); int k = a->info()->dimension(0); // Configure interleave kernel _interleave_kernel.configure(a, &_tmp_a); // Configure transpose kernel _transpose_kernel.configure(b, &_tmp_b); // Configure matrix multiplication kernel _mm_kernel.configure(&_tmp_a, &_tmp_b, d, alpha, true, GEMMReshapeInfo(m, n, k)); // Allocate once the all configure methods have been called _tmp_a.allocator()->allocate(); if(!_reshape_b_only_on_first_run) { _tmp_b.allocator()->allocate(); } } // Configure matrix addition kernel if(beta != 0 && c != nullptr) { _ma_kernel.configure(c, d, beta); _run_addition = true; } } } Status NEGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_UNUSED(alpha); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); if(c != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0); ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, c); ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1), "The C matrix must have the same number of rows as the matrix A"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->dimension(0), "The C matrix must have the same number of columns as the matrix B"); } if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0)); if(gemm_info.depth_output_gemm3d() != 0) { if(gemm_info.reinterpret_input_as_3d()) { ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1)); ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2)); } else { ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2)); } } else { ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1)); } } // Check if we need to run the optimized assembly kernel const bool run_optimised = c == nullptr && bool(NEGEMMAssemblyDispatch::validate(a, b, output, alpha, beta, true)); if(!run_optimised) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "NEGEMM cannot reinterpret the input tensor as 3D"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0, "NEGEMM cannot reinterpret the output tensor as 3D"); // Check if the first input tensor is a vector. const bool run_vector_matrix_multiplication = a->dimension(1) < 2; // Check if we need to reshape the matrix A and matrix B const bool run_interleave_transpose = !run_vector_matrix_multiplication && !(gemm_info.reshape_b_only_on_first_run()); // Arguments used by GEMMReshapeInfo // If we pass the matrix A and matrix B reshaped to NEGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to NEGEMMReshapeInfo // in order to know how the matrices have been reshaped const int m = a->dimension(1); const int n = b->dimension(0); const int k = a->dimension(0); int mult_transpose1xW_width = 1; int mult_interleave4x4_height = 1; const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d()); const ITensorInfo *matrix_a_info = a; const ITensorInfo *matrix_b_info = b; TensorInfo tmp_a_info{}; TensorInfo tmp_b_info{}; TensorInfo tmp_output_info = *output->clone(); if(run_interleave_transpose) { matrix_a_info = &tmp_a_info; matrix_b_info = &tmp_b_info; // Validate interleave kernel auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d()))); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(a, &tmp_a_info)); // Validate transpose kernel auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width))); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(b, &tmp_b_info)); } // Validate matrix multiply auto_init_if_empty(tmp_output_info, matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info))); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info)); } // Validate matrix addition kernel if(beta != 0 && c != nullptr) { ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixAdditionKernel::validate(c, output, beta)); } return Status{}; } void NEGEMM::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(_asm_glue.is_configured()) { _asm_glue.run(); } else { if(!_run_vector_matrix_multiplication) { // Run interleave kernel NEScheduler::get().schedule(&_interleave_kernel, Window::DimY); if(!_reshape_b_only_on_first_run) { // Run transpose kernel NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); } } NEScheduler::get().schedule(&_mm_kernel, _run_vector_matrix_multiplication ? Window::DimX : Window::DimY); // Run matrix addition kernel if(_run_addition) { NEScheduler::get().schedule(&_ma_kernel, Window::DimY); } } } void NEGEMM::prepare() { if(!_is_prepared) { if(_asm_glue.is_configured()) { ARM_COMPUTE_ERROR_ON(!_original_b->is_used()); _asm_glue.prepare(); } else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication && !_asm_glue.is_configured()) { ARM_COMPUTE_ERROR_ON(!_original_b->is_used()); _tmp_b.allocator()->allocate(); NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); _original_b->mark_as_unused(); } _is_prepared = true; } } } // namespace arm_compute