/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include #include using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; NEFullyConnectedLayerReshapeWeights::NEFullyConnectedLayerReshapeWeights(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _transpose_kernel(), _transpose1xW_kernel(), _transpose_output(), _transpose_weights(false), _is_batched_fc_layer(false) { } void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output, bool transpose_weights, bool is_batched_fc_layer) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Perform validate step ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayerReshapeWeights::validate(input->info(), output->info(), transpose_weights, is_batched_fc_layer)); _transpose_weights = transpose_weights; _is_batched_fc_layer = is_batched_fc_layer; // Check if we need to transpose the weights if(_transpose_weights) { if(_is_batched_fc_layer) { // Initialize the output tensor for transpose _transpose_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*input->info()))); _memory_group.manage(&_transpose_output); _transpose_kernel.configure(input, &_transpose_output); // Configure transpose 1xW kernel _transpose1xW_kernel.configure(&_transpose_output, output); // Allocate temporary tensor used for transposing the weights _transpose_output.allocator()->allocate(); } else { _transpose_kernel.configure(input, output); } } else { if(_is_batched_fc_layer) { // Configure transpose 1xW kernel _transpose1xW_kernel.configure(input, output); } } } Status NEFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output, bool transpose_weights, bool is_batched_fc_layer) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 2); ARM_COMPUTE_RETURN_ERROR_ON_MSG(!transpose_weights && !is_batched_fc_layer, "Configuration transpose_weights=false & is_batched_fc_layer=false not supported"); if(transpose_weights) { if(is_batched_fc_layer) { std::unique_ptr use_output = output->clone(); use_output->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*input)); ARM_COMPUTE_RETURN_ON_ERROR(NETransposeKernel::validate(input, use_output.get())); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(use_output.get(), output)); } else { ARM_COMPUTE_RETURN_ON_ERROR(NETransposeKernel::validate(input, output)); } } else { if(is_batched_fc_layer) { ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(input, output)); } } return Status{}; } void NEFullyConnectedLayerReshapeWeights::run() { _memory_group.acquire(); if(_transpose_weights) { NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); } if(_is_batched_fc_layer) { NEScheduler::get().schedule(&_transpose1xW_kernel, Window::DimY); } _memory_group.release(); } NEFullyConnectedLayer::NEFullyConnectedLayer(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _im2col_kernel(), _reshape_weights_function(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _reshape_weights_output(), _original_weights(nullptr), _is_batched_fc_layer(false), _linearize_input(false), _accumulate_biases(false), _is_prepared(false) { } void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose_weights, bool are_weights_reshaped) { // With the Fully Connected layer we can have 4 different cases: // 1) Convolution layer -> Fully Connected layer without batches // 2) Fully Connected layer -> Fully Connected layer without batches // 3) Convolution layer -> Fully Connected layer with batches // 4) Fully Connected layer -> Fully Connected layer with batches // Expected shape before transpose and reshaping // Input: In x B (In and B can be multi-dimensional) // Weights: flat(In) x Out // Biases: Out // Output: Out x B (B can be multi-dimensional) ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); // Perform validate step ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayer::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), transpose_weights, are_weights_reshaped)); const int num_batch_dimensions = std::max(0, static_cast(output->info()->tensor_shape().num_dimensions()) - 1); const int num_input_dimensions = input->info()->tensor_shape().num_dimensions() - num_batch_dimensions; const size_t linear_input_size = input->info()->tensor_shape().total_size_lower(num_input_dimensions); _original_weights = weights; _linearize_input = (input->info()->tensor_shape().x() != linear_input_size) || (num_input_dimensions > 1 && linear_input_size == 1); _accumulate_biases = biases != nullptr; _is_batched_fc_layer = num_batch_dimensions > 0; _is_prepared = are_weights_reshaped || (!transpose_weights && !_is_batched_fc_layer); const size_t interleave_width = 16 / input->info()->element_size(); const ITensor *weights_to_use = weights; if(!_is_prepared) { weights_to_use = &_reshape_weights_output; _reshape_weights_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_fully_connected_reshaped_weights_shape(weights->info(), transpose_weights, _is_batched_fc_layer, interleave_width))); // Reshape the weights _reshape_weights_function.configure(weights, &_reshape_weights_output, transpose_weights, _is_batched_fc_layer); } const ITensor *multiply_input = input; if(_linearize_input) { _im2col_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_im2col_fc_shape(input->info(), num_input_dimensions))); // Configure im2col kernel _memory_group.manage(&_im2col_output); _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false, true); multiply_input = &_im2col_output; } int m = multiply_input->info()->dimension(1); int k = multiply_input->info()->dimension(0); if(_is_batched_fc_layer) { _interleave4x4_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_interleaved_shape(*multiply_input->info()))); // Configure interleave4x4 kernel _memory_group.manage(&_interleave4x4_output); _interleave4x4_kernel.configure(multiply_input, &_interleave4x4_output); multiply_input = &_interleave4x4_output; } // Configure matrix multiply kernel _mm_kernel.configure(multiply_input, weights_to_use, output, 1.0f, _is_batched_fc_layer, GEMMReshapeInfo(m, 0 /* no transpose */, k)); if(_accumulate_biases) { // Configure accumulate biases kernel _accumulate_biases_kernel.configure(output, biases); } if(_linearize_input) { _im2col_output.allocator()->allocate(); } if(_is_batched_fc_layer) { _interleave4x4_output.allocator()->allocate(); } } Status NEFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, bool transpose_weights, bool are_weights_reshaped) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, weights, output); const int num_batch_dimensions = std::max(0, static_cast(output->tensor_shape().num_dimensions()) - 1); const int num_input_dimensions = input->tensor_shape().num_dimensions() - num_batch_dimensions; const size_t linear_input_size = input->tensor_shape().total_size_lower(num_input_dimensions); const bool linearize_input = (input->tensor_shape().x() != linear_input_size) || (num_input_dimensions > 1 && linear_input_size == 1); const bool accumulate_biases = biases != nullptr; const bool is_batched_fc_layer = num_batch_dimensions > 0; ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().total_size_upper(num_input_dimensions) != output->tensor_shape().total_size_upper(1)); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2); const size_t interleave_width = 16 / input->element_size(); const ITensorInfo *weights_to_use = weights; std::unique_ptr reshape_weights_output = input->clone(); if(!are_weights_reshaped && (transpose_weights || is_batched_fc_layer)) { reshape_weights_output->set_tensor_shape(compute_fully_connected_reshaped_weights_shape(weights, transpose_weights, is_batched_fc_layer, interleave_width)); ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayerReshapeWeights::validate(weights, reshape_weights_output.get(), transpose_weights, is_batched_fc_layer)); weights_to_use = reshape_weights_output.get(); } // Check correct shape of weights if(is_batched_fc_layer) { // Transpose + Transpose1xW ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().x() != linear_input_size * interleave_width); ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().y() != static_cast(std::ceil(static_cast(output->tensor_shape().x()) / interleave_width))); } else { // Transpose ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().x() != output->tensor_shape().x()); ARM_COMPUTE_RETURN_ERROR_ON(weights_to_use->tensor_shape().y() != linear_input_size); } const ITensorInfo *multiply_input = input; std::unique_ptr im2col_output = input->clone(); std::unique_ptr interleave4x4_output = input->clone(); if(linearize_input) { im2col_output->set_tensor_shape(compute_im2col_fc_shape(input, num_input_dimensions)); ARM_COMPUTE_RETURN_ON_ERROR(NEIm2ColKernel::validate(input, im2col_output.get(), Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false, true)); multiply_input = im2col_output.get(); } int m = multiply_input->dimension(1); int k = multiply_input->dimension(0); if(is_batched_fc_layer) { interleave4x4_output->set_tensor_shape(compute_interleaved_shape(*multiply_input)); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(multiply_input, interleave4x4_output.get())); multiply_input = interleave4x4_output.get(); } ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixMultiplyKernel::validate(multiply_input, weights_to_use, output, 1.0f, is_batched_fc_layer, GEMMReshapeInfo(m, 0 /* no transpose */, k))); if(accumulate_biases) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->tensor_shape().x() != output->tensor_shape().x()); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixAccumulateBiasesKernel::validate(output, biases)); } return Status{}; } void NEFullyConnectedLayer::run() { prepare(); _memory_group.acquire(); // Linearize input if it comes from a convolutional layer if(_linearize_input) { NEScheduler::get().schedule(&_im2col_kernel, Window::DimY); } // Interleave input if(_is_batched_fc_layer) { NEScheduler::get().schedule(&_interleave4x4_kernel, Window::DimY); } // Run matrix multiply NEScheduler::get().schedule(&_mm_kernel, _is_batched_fc_layer ? Window::DimY : Window::DimX); // Accumulate biases if provided if(_accumulate_biases) { NEScheduler::get().schedule(&_accumulate_biases_kernel, Window::DimY); } _memory_group.release(); } void NEFullyConnectedLayer::prepare() { // Reshape of the weights (happens only once) if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights reshape, clean internal tensors and mark original weights tensor as unused _reshape_weights_output.allocator()->allocate(); _reshape_weights_function.run(); _reshape_weights_function = NEFullyConnectedLayerReshapeWeights(); _original_weights->mark_as_unused(); _is_prepared = true; } }