/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include #include using namespace arm_compute; NEFullyConnectedLayerReshapeWeights::NEFullyConnectedLayerReshapeWeights() : _transpose_kernel(), _transpose1xW_kernel(), _transpose_output(), _transpose_weights(false), _is_batched_fc_layer(false) { } void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output, bool transpose_weights, bool is_batched_fc_layer) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON(output == nullptr); ARM_COMPUTE_ERROR_ON(input->info()->num_dimensions() != 2); ARM_COMPUTE_ERROR_ON((transpose_weights == false) && (is_batched_fc_layer == false)); const DataType dt = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); _transpose_weights = transpose_weights; _is_batched_fc_layer = is_batched_fc_layer; // Check if we need to transpose the weights if(_transpose_weights) { if(_is_batched_fc_layer) { // Initialize the output tensor for transpose TensorShape shape_transposed(input->info()->dimension(1), input->info()->dimension(0)); _transpose_output.allocator()->init(TensorInfo(shape_transposed, 1, dt, fixed_point_position)); _transpose_kernel.configure(input, &_transpose_output); // Configure transpose 1xW kernel _transpose1xW_kernel.configure(&_transpose_output, output); // Allocate temporary tensor used for transposing the weights _transpose_output.allocator()->allocate(); } else { _transpose_kernel.configure(input, output); } } else { if(_is_batched_fc_layer) { // Configure transpose 1xW kernel _transpose1xW_kernel.configure(input, output); } else { ARM_COMPUTE_ERROR("Configuration transpose_weights=false & is_batched_fc_layer=false not supported"); } } } void NEFullyConnectedLayerReshapeWeights::run() { if(_transpose_weights) { NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); } if(_is_batched_fc_layer) { NEScheduler::get().schedule(&_transpose1xW_kernel, Window::DimY); } } NEFullyConnectedLayer::NEFullyConnectedLayer() : _im2col_kernel(), _reshape_weights_kernel(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _reshape_weights_output(), _are_weights_reshaped(false), _is_fc_after_conv(false), _is_batched_fc_layer(false), _accumulate_biases(false) { } void NEFullyConnectedLayer::configure_conv_fc_wb(const ITensor *input, const ITensor *weights, ITensor *output) { ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2) * (16 / weights->info()->element_size()))); const DataType dt = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); // If the fully connected layer is called after a convolution layer, the input tensor must be linearized // Initialize output tensor for im2col TensorShape shape_im2col; shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)); shape_im2col.set(1, input->info()->dimension(3)); shape_im2col.set(2, input->info()->dimension(4)); shape_im2col.set(3, input->info()->dimension(5)); _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position)); // Initialize output tensor for interleave 4x4 TensorShape shape_interleaved = _im2col_output.info()->tensor_shape(); shape_interleaved.set(0, shape_interleaved.x() * 4); shape_interleaved.set(1, std::ceil(static_cast(shape_interleaved.y()) / 4)); _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position)); // Configure im2col kernel _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false); // Configure interleave4x4 kernel _interleave4x4_kernel.configure(&_im2col_output, &_interleave4x4_output); // Configure matrix multiply kernel _mm_kernel.configure(&_interleave4x4_output, weights, output, 1.0f); // Allocate the tensors once all the configure methods have been called _im2col_output.allocator()->allocate(); _interleave4x4_output.allocator()->allocate(); } void NEFullyConnectedLayer::configure_fc_fc_wb(const ITensor *input, const ITensor *weights, ITensor *output) { const DataType dt = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); // Initialize output tensor for interleave 4x4 TensorShape shape_interleaved = input->info()->tensor_shape(); shape_interleaved.set(0, shape_interleaved.x() * 4); shape_interleaved.set(1, std::ceil(static_cast(shape_interleaved.y()) / 4)); _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position)); // Configure interleave4x4 kernel _interleave4x4_kernel.configure(input, &_interleave4x4_output); // Configure matrix multiply kernel _mm_kernel.configure(&_interleave4x4_output, weights, output, 1.0f); // Allocate the tensors once all the configure methods have been called _interleave4x4_output.allocator()->allocate(); } void NEFullyConnectedLayer::configure_conv_fc_nb(const ITensor *input, const ITensor *weights, ITensor *output) { ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)))); const DataType dt = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); // If the fully connected layer is called after a convolution layer, the input tensor must be linearized // Initialize output tensor for im2col TensorShape shape_im2col; shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)); shape_im2col.set(1, 1); _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position)); // Configure im2col kernel _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false); // Configure matrix multiply kernel _mm_kernel.configure(&_im2col_output, weights, output, 1.0f); // Allocate the output tensor for im2col once all the configure methods have been called _im2col_output.allocator()->allocate(); } void NEFullyConnectedLayer::configure_fc_fc_nb(const ITensor *input, const ITensor *weights, ITensor *output) { ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1)); // Configure matrix multiply kernel _mm_kernel.configure(input, weights, output, 1.0f); } void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose_weights, bool are_weights_reshaped) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, weights, output); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() != 2); const DataType dt = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); _are_weights_reshaped = are_weights_reshaped; _is_fc_after_conv = true; _is_batched_fc_layer = false; _accumulate_biases = false; if(biases != nullptr) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); _accumulate_biases = true; // Configure accumulate biases kernel _accumulate_biases_kernel.configure(output, biases); } // With the Fully Connected layer we can have 4 different cases: // 1) Convolution layer -> Fully Connected layer without batches // 2) Fully Connected layer -> Fully Connected layer without batches // 3) Convolution layer -> Fully Connected layer with batches // 4) Fully Connected layer -> Fully Connected layer with batches // Check if we have a fully connected layer with batches _is_batched_fc_layer = (output->info()->dimension(1) > 1); const ITensor *weights_to_use = weights; if(!are_weights_reshaped) { if((transpose_weights || _is_batched_fc_layer)) { weights_to_use = &_reshape_weights_output; if(transpose_weights) { if(_is_batched_fc_layer) { const float transpose_width = 16.0f / input->info()->element_size(); TensorShape shape_wt(weights->info()->dimension(0) * static_cast(transpose_width), static_cast(std::ceil(weights->info()->dimension(1) / transpose_width))); TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position); _reshape_weights_output.allocator()->init(info_wt); } else { TensorShape shape_wt(weights->info()->dimension(1), weights->info()->dimension(0)); TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position); _reshape_weights_output.allocator()->init(info_wt); } } else { ARM_COMPUTE_ERROR_ON(!_is_batched_fc_layer); const float transpose_width = 16.0f / input->info()->element_size(); TensorShape shape_wt(weights->info()->dimension(1) * static_cast(transpose_width), static_cast(std::ceil(weights->info()->dimension(0) / transpose_width))); TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position); _reshape_weights_output.allocator()->init(info_wt); } // Reshape the weights _reshape_weights_kernel.configure(weights, &_reshape_weights_output, transpose_weights, _is_batched_fc_layer); } } if(_is_batched_fc_layer) { _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3, input->info()->tensor_shape().cend(), output->info()->tensor_shape().cbegin() + 1)); if(_is_fc_after_conv) { // Fully Connected layer after a Convolution Layer with batches configure_conv_fc_wb(input, weights_to_use, output); } else { // Fully Connected layer after a Fully Connected Layer with batches configure_fc_fc_wb(input, weights_to_use, output); } } else { // In case of not batched fully connected layer, the weights will not be reshaped using transposed1xW _is_fc_after_conv = ((weights_to_use->info()->dimension(1)) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))); if(_is_fc_after_conv) { // Fully Connected layer after a Convolution Layer without batches configure_conv_fc_nb(input, weights_to_use, output); } else { // Fully Connected layer after a Fully Connected Layer without batches configure_fc_fc_nb(input, weights_to_use, output); } } // Allocate the transpose tensor if the are_weights_reshaped flag is false and once all the configure methods have been called if(!are_weights_reshaped) { if(transpose_weights || _is_batched_fc_layer) { // Allocate the tensor for the weights reshaped _reshape_weights_output.allocator()->allocate(); } } } void NEFullyConnectedLayer::run() { // Reshape of the weights (happens only once) if(!_are_weights_reshaped) { _are_weights_reshaped = true; _reshape_weights_kernel.run(); } // Linearize input if comes from a convolutional layer if(_is_fc_after_conv) { NEScheduler::get().schedule(&_im2col_kernel, Window::DimY); } // Interleave input if(_is_batched_fc_layer) { NEScheduler::get().schedule(&_interleave4x4_kernel, Window::DimY); } // Run matrix multiply NEScheduler::get().schedule(&_mm_kernel, _is_batched_fc_layer ? Window::DimY : Window::DimX); // Accumulate biases if provided if(_accumulate_biases) { NEScheduler::get().schedule(&_accumulate_biases_kernel, Window::DimY); } }