/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include #include namespace arm_compute { NEFullyConnectedLayerReshapeWeights::NEFullyConnectedLayerReshapeWeights() : _transpose_kernel(), _transpose1xW_kernel(), _transpose_output(), _transpose_weights(false), _is_batched_fc_layer(false) { } void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output, bool transpose_weights, bool is_batched_fc_layer) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON(input->info()->num_dimensions() > 2); ARM_COMPUTE_ERROR_ON(output == nullptr); ARM_COMPUTE_ERROR_ON(!transpose_weights && !is_batched_fc_layer); const DataType data_type = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); _transpose_weights = transpose_weights; _is_batched_fc_layer = is_batched_fc_layer; // Check if we need to transpose the weights if(_transpose_weights) { if(_is_batched_fc_layer) { // Initialize the output tensor for transpose TensorShape shape_transposed(input->info()->dimension(1), input->info()->dimension(0)); _transpose_output.allocator()->init(TensorInfo(shape_transposed, 1, data_type, fixed_point_position)); _transpose_kernel.configure(input, &_transpose_output); // Configure transpose 1xW kernel _transpose1xW_kernel.configure(&_transpose_output, output); // Allocate temporary tensor used for transposing the weights _transpose_output.allocator()->allocate(); } else { _transpose_kernel.configure(input, output); } } else { if(_is_batched_fc_layer) { // Configure transpose 1xW kernel _transpose1xW_kernel.configure(input, output); } else { ARM_COMPUTE_ERROR("Configuration transpose_weights=false & is_batched_fc_layer=false not supported"); } } } void NEFullyConnectedLayerReshapeWeights::run() { if(_transpose_weights) { NEScheduler::get().schedule(&_transpose_kernel, Window::DimY); } if(_is_batched_fc_layer) { NEScheduler::get().schedule(&_transpose1xW_kernel, Window::DimY); } } NEFullyConnectedLayer::NEFullyConnectedLayer() : _im2col_kernel(), _reshape_weights_kernel(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _reshape_weights_output(), _are_weights_reshaped(false), _is_batched_fc_layer(false), _linearize_input(false), _accumulate_biases(false) { } void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose_weights, bool are_weights_reshaped) { // With the Fully Connected layer we can have 4 different cases: // 1) Convolution layer -> Fully Connected layer without batches // 2) Fully Connected layer -> Fully Connected layer without batches // 3) Convolution layer -> Fully Connected layer with batches // 4) Fully Connected layer -> Fully Connected layer with batches // Expected shape before transpose and reshaping // Input: In x B (In and B can be multi-dimensional) // Weights: flat(In) x Out // Biases: Out // Output: Out x B (B can be multi-dimensional) ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, weights, output); const DataType data_type = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); const int num_batch_dimensions = std::max(0, static_cast(output->info()->tensor_shape().num_dimensions()) - 1); const int num_input_dimensions = input->info()->tensor_shape().num_dimensions() - num_batch_dimensions; const size_t linear_input_size = input->info()->tensor_shape().total_size_lower(num_input_dimensions); _linearize_input = input->info()->tensor_shape().x() != linear_input_size; _are_weights_reshaped = are_weights_reshaped; _accumulate_biases = biases != nullptr; _is_batched_fc_layer = num_batch_dimensions > 0; // Check if number of batches match ARM_COMPUTE_ERROR_ON(input->info()->tensor_shape().total_size_upper(num_input_dimensions) != output->info()->tensor_shape().total_size_upper(1)); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 2); const size_t interleave_width = 16 / input->info()->element_size(); const ITensor *weights_to_use = weights; if(!are_weights_reshaped && (transpose_weights || _is_batched_fc_layer)) { weights_to_use = &_reshape_weights_output; TensorShape reshaped_weights_shape(weights->info()->tensor_shape()); // Transpose weights if the user hasn't done it if(transpose_weights) { const size_t shape_x = reshaped_weights_shape.x(); reshaped_weights_shape.set(0, reshaped_weights_shape.y()); reshaped_weights_shape.set(1, shape_x); } // If the we run multiple batches we need 1xW transpose, too. if(_is_batched_fc_layer) { const float shape_x = reshaped_weights_shape.x(); reshaped_weights_shape.set(0, reshaped_weights_shape.y() * interleave_width); reshaped_weights_shape.set(1, static_cast(std::ceil(shape_x / interleave_width))); } _reshape_weights_output.allocator()->init(TensorInfo(reshaped_weights_shape, 1, data_type, fixed_point_position)); // Reshape the weights _reshape_weights_kernel.configure(weights, &_reshape_weights_output, transpose_weights, _is_batched_fc_layer); } // Check correct shape of weights if(_is_batched_fc_layer) { // Transpose + Transpose1xW ARM_COMPUTE_ERROR_ON(weights_to_use->info()->tensor_shape().x() != linear_input_size * interleave_width); ARM_COMPUTE_ERROR_ON(weights_to_use->info()->tensor_shape().y() != static_cast(std::ceil(static_cast(output->info()->tensor_shape().x()) / interleave_width))); } else { // Transpose ARM_COMPUTE_ERROR_ON(weights_to_use->info()->tensor_shape().x() != output->info()->tensor_shape().x()); ARM_COMPUTE_ERROR_ON(weights_to_use->info()->tensor_shape().y() != linear_input_size); } const ITensor *multiply_input = input; if(_linearize_input) { TensorShape shape_im2col(input->info()->tensor_shape()); shape_im2col.collapse(num_input_dimensions); _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, data_type, fixed_point_position)); // Configure im2col kernel _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false); multiply_input = &_im2col_output; } if(_is_batched_fc_layer) { TensorShape shape_interleaved(multiply_input->info()->tensor_shape()); shape_interleaved.set(0, shape_interleaved.x() * 4); shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f)); _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, data_type, fixed_point_position)); // Configure interleave4x4 kernel _interleave4x4_kernel.configure(multiply_input, &_interleave4x4_output); multiply_input = &_interleave4x4_output; } // Configure matrix multiply kernel _mm_kernel.configure(multiply_input, weights_to_use, output, 1.0f); if(_accumulate_biases) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); ARM_COMPUTE_ERROR_ON(biases->info()->tensor_shape().x() != output->info()->tensor_shape().x()); // Configure accumulate biases kernel _accumulate_biases_kernel.configure(output, biases); } // Allocate the transpose tensor if the are_weights_reshaped flag is false and once all the configure methods have been called if(!are_weights_reshaped && (transpose_weights || _is_batched_fc_layer)) { // Allocate the tensor for the weights reshaped _reshape_weights_output.allocator()->allocate(); } if(_linearize_input) { _im2col_output.allocator()->allocate(); } if(_is_batched_fc_layer) { _interleave4x4_output.allocator()->allocate(); } } void NEFullyConnectedLayer::run() { // Reshape of the weights (happens only once) if(!_are_weights_reshaped) { _are_weights_reshaped = true; _reshape_weights_kernel.run(); } // Linearize input if it comes from a convolutional layer if(_linearize_input) { NEScheduler::get().schedule(&_im2col_kernel, Window::DimY); } // Interleave input if(_is_batched_fc_layer) { NEScheduler::get().schedule(&_interleave4x4_kernel, Window::DimY); } // Run matrix multiply NEScheduler::get().schedule(&_mm_kernel, _is_batched_fc_layer ? Window::DimY : Window::DimX); // Accumulate biases if provided if(_accumulate_biases) { NEScheduler::get().schedule(&_accumulate_biases_kernel, Window::DimY); } } } // namespace arm_compute