/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEFFT1D.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/helpers/fft.h" #include "arm_compute/runtime/NEON/NEScheduler.h" namespace arm_compute { NEFFT1D::NEFFT1D(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _digit_reverse_kernel(), _fft_kernels(), _scale_kernel(), _digit_reversed_input(), _digit_reverse_indices(), _num_ffts(0), _axis(0), _run_scale(false) { } void NEFFT1D::configure(const ITensor *input, ITensor *output, const FFT1DInfo &config) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(NEFFT1D::validate(input->info(), output->info(), config)); // Decompose size to radix factors const auto supported_radix = NEFFTRadixStageKernel::supported_radix(); const unsigned int N = input->info()->tensor_shape()[config.axis]; const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix); ARM_COMPUTE_ERROR_ON(decomposed_vector.empty()); // Flags _run_scale = config.direction == FFTDirection::Inverse; const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1; // Configure digit reverse FFTDigitReverseKernelInfo digit_reverse_config; digit_reverse_config.axis = config.axis; digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse; TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32); _digit_reverse_indices.allocator()->init(digit_reverse_indices_info); _memory_group.manage(&_digit_reversed_input); _digit_reverse_kernel.configure(input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config); // Create and configure FFT kernels unsigned int Nx = 1; _num_ffts = decomposed_vector.size(); _fft_kernels.resize(_num_ffts); _axis = config.axis; for(unsigned int i = 0; i < _num_ffts; ++i) { const unsigned int radix_for_stage = decomposed_vector.at(i); FFTRadixStageKernelInfo fft_kernel_info; fft_kernel_info.axis = config.axis; fft_kernel_info.radix = radix_for_stage; fft_kernel_info.Nx = Nx; fft_kernel_info.is_first_stage = (i == 0); _fft_kernels[i].configure(&_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info); Nx *= radix_for_stage; } // Configure scale kernel if(_run_scale) { FFTScaleKernelInfo scale_config; scale_config.scale = static_cast(N); scale_config.conjugate = config.direction == FFTDirection::Inverse; is_c2r ? _scale_kernel.configure(&_digit_reversed_input, output, scale_config) : _scale_kernel.configure(output, nullptr, scale_config); } // Allocate tensors _digit_reversed_input.allocator()->allocate(); _digit_reverse_indices.allocator()->allocate(); // Init digit reverse indices const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector); std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast(_digit_reverse_indices.buffer())); } Status NEFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2); ARM_COMPUTE_RETURN_ERROR_ON(std::set({ 0, 1 }).count(config.axis) == 0); // Check if FFT is decomposable const auto supported_radix = NEFFTRadixStageKernel::supported_radix(); const unsigned int N = input->tensor_shape()[config.axis]; const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix); ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty()); // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { // All combinations are supported except real input with real output (i.e., both input channels set to 1) ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1); ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() > 2); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } void NEFFT1D::run() { MemoryGroupResourceScope scope_mg(_memory_group); NEScheduler::get().schedule(&_digit_reverse_kernel, (_axis == 0 ? Window::DimY : Window::DimZ)); for(unsigned int i = 0; i < _num_ffts; ++i) { NEScheduler::get().schedule(&_fft_kernels[i], (_axis == 0 ? Window::DimY : Window::DimX)); } // Run output scaling if(_run_scale) { NEScheduler::get().schedule(&_scale_kernel, Window::DimY); } } } // namespace arm_compute