/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "support/ToolchainSupport.h" using namespace arm_compute; using namespace arm_compute::misc; NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3() : _kernel(), _output_stage_kernel(), _border_handler(), _accumulator(), _has_bias(false), _is_quantized(false) { } void NEDepthwiseConvolutionLayer3x3::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); PixelValue zero_value(0.f); _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _has_bias = biases != nullptr; // Allocate the intermediate accumulator tensor in case of fixed point input if(_is_quantized) { _accumulator.allocator()->init(TensorInfo(output->info()->tensor_shape(), 1, DataType::S32)); _accumulator.info()->set_quantization_info(input->info()->quantization_info()); zero_value = PixelValue(static_cast(input->info()->quantization_info().offset)); } // Configure depthwise convolution kernel _kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info); // Configure border handler _border_handler.configure(input, _kernel.border_size(), BorderMode::CONSTANT, zero_value); // Configure biases accumulation if(_has_bias || _is_quantized) { if(_is_quantized) { float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_accumulator, biases, output, output_multiplier, output_shift, output->info()->quantization_info().offset); _accumulator.allocator()->allocate(); } else { _output_stage_kernel.configure(output, biases); } } } void NEDepthwiseConvolutionLayer3x3::run() { NEScheduler::get().schedule(&_border_handler, Window::DimX); NEScheduler::get().schedule(&_kernel, Window::DimX); if(_has_bias || _is_quantized) { NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); } } NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer() : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_quantized(false) { } void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != weights->info()->dimension(2)); const size_t weights_w = weights->info()->dimension(0); const size_t weights_h = weights->info()->dimension(1); const size_t weights_z = weights->info()->dimension(2); _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); // Should bias be appended ? bool append_bias = (biases != nullptr) && !_is_quantized; // Calculate output shape TensorShape dwc_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info); // Output width and height const unsigned int conv_w = dwc_output_shape.x(); const unsigned int conv_h = dwc_output_shape.y(); // Set up intermediate tensors const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0); const size_t conv_size = conv_w * conv_h; // Im2Col configuration TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr); // GEMV configuration DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type(); TensorShape shape_v2mm_out = input->info()->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output); _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(dwc_output_shape)); _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h); // Output staged configuration if(_is_quantized) { float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output->info()->quantization_info().offset); _output_reshaped.allocator()->allocate(); } // Fill borders on inputs PixelValue zero_in(static_cast(0)); PixelValue zero_w(static_cast(0)); if(_is_quantized) { zero_in = PixelValue(static_cast(input->info()->quantization_info().offset)); zero_w = PixelValue(static_cast(weights->info()->quantization_info().offset)); } BorderSize border_size = _v2mm_kernel.border_size(); _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in); border_size.bottom = 0; _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w); // Allocate intermediate tensors _input_reshaped.allocator()->allocate(); _weights_reshaped.allocator()->allocate(); _v2mm_output.allocator()->allocate(); } void NEDepthwiseConvolutionLayer::run() { NEScheduler::get().schedule(&_im2col_kernel, Window::DimX); NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX); NEScheduler::get().schedule(&_v2mm_input_fill_border, Window::DimX); NEScheduler::get().schedule(&_v2mm_weights_fill_border, Window::DimX); NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX); NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX); if(_is_quantized) { NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); } }