/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "support/ToolchainSupport.h" #include "arm_compute/core/utils/misc/InfoHelpers.h" using namespace arm_compute::misc; using namespace arm_compute::misc::shape_calculator; namespace arm_compute { NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3(std::shared_ptr memory_manager) : _memory_group(memory_manager), _dwc_kernel(), _dwc_optimized_func(memory_manager), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(), _activationlayer_function(), _accumulator(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _has_bias(false), _is_quantized(false), _is_optimized(false), _is_nchw(true), _permute(false), _is_activationlayer_enabled(false), _is_prepared(false) { } void NEDepthwiseConvolutionLayer3x3::configure_generic(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_UNUSED(act_info); PixelValue zero_value(0.f); // Initialize the intermediate accumulator tensor in case of quantized input if(_is_quantized) { TensorShape accum_shape = output->info()->tensor_shape(); DataLayout accum_layout = output->info()->data_layout(); if(!_is_nchw) { permute(accum_shape, PermutationVector(1U, 2U, 0U)); accum_layout = DataLayout::NCHW; } _memory_group.manage(&_accumulator); _accumulator.allocator()->init(TensorInfo(accum_shape, 1, DataType::S32, output->info()->quantization_info())); _accumulator.info()->set_data_layout(accum_layout); zero_value = PixelValue(static_cast(input->info()->quantization_info().offset)); } if(!_is_nchw) { _memory_group.manage(&_permuted_input); _memory_group.manage(&_permuted_output); // Configure the function to transform the input tensor from NHWC -> NCHW _permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U)); _permuted_input.info()->set_data_layout(DataLayout::NCHW); // Configure the function to transform the weights tensor from HWI -> IHW _permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U)); _permuted_weights.info()->set_data_layout(DataLayout::NCHW); // Configure depthwise _dwc_kernel.configure(&_permuted_input, &_permuted_weights, (_is_quantized) ? &_accumulator : &_permuted_output, conv_info, depth_multiplier, dilation); // Configure border handler _border_handler.configure(&_permuted_input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value); // Allocate tensors _permuted_input.allocator()->allocate(); } else { // Configure depthwise convolution kernel _dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier, dilation); // Configure border handler _border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value); } // Configure biases accumulation if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier; int output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_accumulator, biases, _is_nchw ? output : &_permuted_output, output_multiplier, output_shift, output_quant_info.offset); _accumulator.allocator()->allocate(); } else if(_has_bias) { _output_stage_kernel.configure(_is_nchw ? output : &_permuted_output, biases); } // Permute output if(!_is_nchw) { // Configure the function to transform the convoluted output to NHWC _permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U)); _permuted_output.allocator()->allocate(); } } void NEDepthwiseConvolutionLayer3x3::configure_optimized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info) { ActivationLayerInfo act_info_to_use = ActivationLayerInfo(); const bool is_relu = arm_compute::utils::info_helpers::is_relu(act_info); const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info); _is_activationlayer_enabled = act_info.enabled() && !(is_relu || is_relu6); if(!_is_activationlayer_enabled) { act_info_to_use = act_info; } if(_is_nchw) { _memory_group.manage(&_permuted_input); _memory_group.manage(&_permuted_output); // Configure the function to transform the input tensor from NCHW -> NHWC _permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U)); _permuted_input.info()->set_data_layout(DataLayout::NHWC); // Configure the function to transform the weights tensor from IHW -> HWI _permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U)); _permuted_weights.info()->set_data_layout(DataLayout::NHWC); // Configure optimized depthwise _dwc_optimized_func.configure(&_permuted_input, &_permuted_weights, biases, &_permuted_output, conv_info, depth_multiplier, act_info_to_use); // Configure the function to transform the convoluted output to ACL's native ordering format NCHW _permuted_output.info()->set_data_layout(DataLayout::NHWC); _permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U)); // Allocate tensors _permuted_input.allocator()->allocate(); _permuted_output.allocator()->allocate(); } else { _dwc_optimized_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info_to_use); } } void NEDepthwiseConvolutionLayer3x3::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); // idx_w and idx_h only used for validation const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_UNUSED(idx_w); ARM_COMPUTE_UNUSED(idx_h); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); _original_weights = weights; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _has_bias = biases != nullptr; _is_optimized = NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input->info(), weights->info(), conv_info, depth_multiplier, dilation); _is_nchw = input->info()->data_layout() == DataLayout::NCHW; _permute = _is_optimized == _is_nchw; _is_prepared = false; _is_activationlayer_enabled = act_info.enabled(); // Configure appropriate pipeline if(_is_optimized) { configure_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info); } else { configure_generic(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); } // Configure activation if(_is_activationlayer_enabled) { _activationlayer_function.configure(output, nullptr, act_info); } } Status NEDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1); const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); if(biases != nullptr) { const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(channel_idx)); } if(!NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input, weights, conv_info, depth_multiplier, dilation)) { const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); TensorInfo accumulator = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32)); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, is_quantized ? &accumulator : output, conv_info, depth_multiplier)); if(is_quantized) { ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&accumulator, biases, output)); } } else { ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionAssemblyDispatch::validate(input, weights, biases, output, conv_info, depth_multiplier)); } //Validate Activation Layer if(act_info.enabled()) { ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info)); } return Status{}; } void NEDepthwiseConvolutionLayer3x3::run_generic() { // Fill border NEScheduler::get().schedule(&_border_handler, Window::DimX); // Execute depthwise convolution NEScheduler::get().schedule(&_dwc_kernel, Window::DimX); // Add biases if(_has_bias || _is_quantized) { NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); } // Permute output if(!_is_nchw) { _permute_output.run(); } } void NEDepthwiseConvolutionLayer3x3::run_optimized() { // Run assembly function _dwc_optimized_func.run(); // Permute output if(_is_nchw) { _permute_output.run(); } } void NEDepthwiseConvolutionLayer3x3::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); // Permute input if(_permute) { _permute_input.run(); } _is_optimized ? run_optimized() : run_generic(); // Run activation if(_is_activationlayer_enabled) { _activationlayer_function.run(); } } void NEDepthwiseConvolutionLayer3x3::prepare() { if(!_is_prepared) { // Permute weights if(_permute) { _permuted_weights.allocator()->allocate(); _permute_weights.run(); _original_weights->mark_as_unused(); } // Prepare optimized function if(_is_optimized) { _dwc_optimized_func.prepare(); if(!_permuted_weights.is_used()) { _permuted_weights.allocator()->free(); } } _is_prepared = true; } } NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer() : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _permute_input(), _permute_weights(), _permute_output(), _activationlayer_function(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _permuted_input(), _permuted_weights(), _permuted_output(), _is_prepared(false), _is_quantized(false), _is_nhwc(false), _is_activationlayer_enabled(false), _original_weights(nullptr) { } void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { const unsigned int channel_idx = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_UNUSED(channel_idx); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_ERROR_ON((input->info()->dimension(channel_idx) * depth_multiplier) != weights->info()->dimension(channel_idx)); // idx_w and idx_h only used for validation const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_UNUSED(idx_w); ARM_COMPUTE_UNUSED(idx_h); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); _is_nhwc = input->info()->data_layout() == DataLayout::NHWC; ITensor *input_to_use = input; const ITensor *weights_to_use = weights; ITensor *output_to_use = output; if(_is_nhwc) { _permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U)); _permuted_input.info()->set_data_layout(DataLayout::NCHW); input_to_use = &_permuted_input; _permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U)); _permuted_weights.info()->set_data_layout(DataLayout::NCHW); weights_to_use = &_permuted_weights; } const size_t weights_w = weights_to_use->info()->dimension(0); const size_t weights_h = weights_to_use->info()->dimension(1); const size_t weights_z = weights_to_use->info()->dimension(2); _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _is_prepared = false; _original_weights = weights_to_use; // Should bias be appended ? bool append_bias = (biases != nullptr) && !_is_quantized; // Calculate output shape TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape); if(_is_nhwc) { permute(output_shape, PermutationVector(1U, 2U, 0U)); _permuted_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); _permuted_output.info()->set_data_layout(DataLayout::NCHW); output_to_use = &_permuted_output; } // Output width and height const unsigned int conv_w = output_shape.x(); const unsigned int conv_h = output_shape.y(); // Set up intermediate tensors const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0); const size_t conv_size = conv_w * conv_h; // Im2Col configuration TensorShape shape_im2col = input_to_use->info()->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col).set_data_layout(DataLayout::NCHW)); _im2col_kernel.configure(input_to_use, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape).set_data_layout(DataLayout::NCHW)); _weights_reshape_kernel.configure(weights_to_use, &_weights_reshaped, append_bias ? biases : nullptr); // GEMV configuration DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type(); TensorShape shape_v2mm_out = input_to_use->info()->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out).set_data_layout(DataLayout::NCHW)); _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output); _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output_to_use, conv_w, conv_h); // Output staged configuration if(_is_quantized) { const QuantizationInfo output_quant_info = output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier; int output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_output_reshaped, biases, output_to_use, output_multiplier, output_shift, output_quant_info.offset); _output_reshaped.allocator()->allocate(); } if(_is_nhwc) { _permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U)); _permuted_input.allocator()->allocate(); _permuted_weights.allocator()->allocate(); _permuted_output.allocator()->allocate(); } // Fill borders on inputs PixelValue zero_in(static_cast(0)); PixelValue zero_w(static_cast(0)); if(_is_quantized) { zero_in = PixelValue(static_cast(input->info()->quantization_info().offset)); zero_w = PixelValue(static_cast(weights->info()->quantization_info().offset)); } BorderSize border_size = _v2mm_kernel.border_size(); _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in); border_size.bottom = 0; _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w); // Allocate intermediate tensors _input_reshaped.allocator()->allocate(); _v2mm_output.allocator()->allocate(); //Configure Activation Layer _is_activationlayer_enabled = act_info.enabled(); if(_is_activationlayer_enabled) { _activationlayer_function.configure(output, nullptr, act_info); } } Status NEDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1); const unsigned int width_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) + (weights->dimension(width_idx) - 1) * (dilation.x() - 1) > input->dimension(width_idx) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(height_idx) + (weights->dimension(height_idx) - 1) * (dilation.y() - 1) > input->dimension(height_idx) + conv_info.pad_top() + conv_info.pad_bottom()); // Clone output to use auto init auto output_clone = output->clone(); const ITensorInfo *input_to_use = input; const ITensorInfo *weights_to_use = weights; const ITensorInfo *output_to_use = output_clone.get(); TensorShape permuted_input_shape = input->tensor_shape(); TensorShape permuted_weights_shape = weights->tensor_shape(); TensorInfo permuted_input; TensorInfo permuted_weights; if(input->data_layout() == DataLayout::NHWC) { permute(permuted_input_shape, PermutationVector(1U, 2U, 0U)); permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U)); permuted_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW)); permuted_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW)); input_to_use = &permuted_input; weights_to_use = &permuted_weights; } const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool append_bias = (biases != nullptr) && !is_quantized; TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); const size_t weights_w = weights_to_use->dimension(0); const size_t weights_h = weights_to_use->dimension(1); const size_t weights_z = weights_to_use->dimension(2); const unsigned int conv_w = output_shape[width_idx]; const unsigned int conv_h = output_shape[height_idx]; const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0); const size_t conv_size = conv_w * conv_h; // Output auto inizialitation if not yet initialized auto_init_if_empty(*output_clone, input->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); TensorInfo permuted_output; if(input->data_layout() == DataLayout::NHWC) { permute(output_shape, PermutationVector(1U, 2U, 0U)); permuted_output = TensorInfo(output_clone->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_data_layout(DataLayout::NCHW)); output_to_use = &permuted_output; } // Im2Col configuration TensorShape shape_im2col = input_to_use->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col).set_data_layout(DataLayout::NCHW)); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseIm2ColKernel::validate(input_to_use, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation)); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape).set_data_layout(DataLayout::NCHW)); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseWeightsReshapeKernel::validate(weights_to_use, &weights_reshaped, append_bias ? biases : nullptr)); // GEMV configuration DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type(); TensorShape shape_v2mm_out = input_to_use->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out).set_data_layout(DataLayout::NCHW)); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output)); TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_to_use->tensor_shape())); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output_to_use, conv_w, conv_h)); if(is_quantized) { ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output_to_use)); } // Validate Activation Layer if(act_info.enabled()) { ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info)); } return Status{}; } void NEDepthwiseConvolutionLayer::run() { prepare(); if(_is_nhwc) { _permute_input.run(); } NEScheduler::get().schedule(&_im2col_kernel, Window::DimX); NEScheduler::get().schedule(&_v2mm_input_fill_border, Window::DimX); NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX); NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX); if(_is_quantized) { NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); } if(_is_nhwc) { _permute_output.run(); } if(_is_activationlayer_enabled) { _activationlayer_function.run(); } } void NEDepthwiseConvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); if(_is_nhwc) { _permute_weights.run(); } // Run reshape and mark original weights as unused _weights_reshaped.allocator()->allocate(); NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX); NEScheduler::get().schedule(&_v2mm_weights_fill_border, Window::DimX); _original_weights->mark_as_unused(); _is_prepared = true; } } } // namespace arm_compute