/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "support/ToolchainSupport.h" using namespace arm_compute; using namespace arm_compute::misc; using namespace arm_compute::misc::shape_calculator; NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3() : _dwc_kernel(), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(), _accumulator(), _input_nhwc(), _weights_hwio(), _output_nhwc(), _has_bias(false), _is_quantized(false), _is_optimized(false), _are_weights_reshaped(false), _is_nchw(true), _is_first_run(true) { } void NEDepthwiseConvolutionLayer3x3::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); PixelValue zero_value(0.f); _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _has_bias = biases != nullptr; _is_optimized = NEDepthwiseConvolutionLayer3x3Kernel::is_optimized_execution_possible(input->info()->tensor_shape(), conv_info, input->info()->data_type(), depth_multiplier, input->info()->data_layout()); _are_weights_reshaped = false; _is_nchw = input->info()->data_layout() == DataLayout::NCHW; ARM_COMPUTE_ERROR_ON(!_is_optimized && !_is_nchw); if(_is_optimized) { if(_is_nchw) { // Configure the function to transform the input tensor from NCHW -> NHWC _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U)); // Configure the function to transform the weights tensor from IHW -> HWI _permute_weights.configure(weights, &_weights_hwio, PermutationVector(2U, 0U, 1U)); // Configure optimized depthwise _dwc_kernel.configure(&_input_nhwc, &_weights_hwio, &_output_nhwc, conv_info, depth_multiplier, DataLayout::NHWC); // Configure the function to transform the convoluted output to ACL's native ordering format NCHW _permute_output.configure(&_output_nhwc, output, PermutationVector(1U, 2U, 0U)); // Allocate tensors _input_nhwc.allocator()->allocate(); _weights_hwio.allocator()->allocate(); _output_nhwc.allocator()->allocate(); } else { _dwc_kernel.configure(input, weights, output, conv_info, depth_multiplier, DataLayout::NHWC); } } else { // Allocate the intermediate accumulator tensor in case of quantized input if(_is_quantized) { _accumulator.allocator()->init(TensorInfo(output->info()->tensor_shape(), 1, DataType::S32)); _accumulator.info()->set_quantization_info(input->info()->quantization_info()); zero_value = PixelValue(static_cast(input->info()->quantization_info().offset)); } // Configure depthwise convolution kernel _dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier); // Configure border handler _border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value); } // Configure biases accumulation if(_has_bias || _is_quantized) { if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_accumulator, biases, output, output_multiplier, output_shift, output_quant_info.offset); _accumulator.allocator()->allocate(); } else { _output_stage_kernel.configure(output, biases); } } } Status NEDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_UNUSED(biases); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() != DataLayout::NCHW && input->data_layout() != DataLayout::NHWC); return NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, output, conv_info, depth_multiplier); } void NEDepthwiseConvolutionLayer3x3::run() { if(_is_first_run && _is_optimized) { _is_first_run = false; // Create convolver (deferred) _dwc_kernel.generate_convolver(); } // Permute weights in HWIO format if the optimized kernel will be executedd if(!_are_weights_reshaped && _is_optimized && _is_nchw) { _are_weights_reshaped = true; _permute_weights.run(); } // Handle input if(_is_optimized) { if(_is_nchw) { // Permute input to NHWC format execution _permute_input.run(); } } else { // Fill border in NCHW format execution NEScheduler::get().schedule(&_border_handler, Window::DimX); } // Execute depthwise convolution NEScheduler::get().schedule(&_dwc_kernel, Window::DimX); // Permute output to ACL's native NCHW format in case of NHWC execution if(_is_optimized && _is_nchw) { _permute_output.run(); } // Add biases if(_has_bias || _is_quantized) { NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); } } NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer() : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _original_weights(nullptr) { } void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_ERROR_ON((input->info()->dimension(2) * depth_multiplier) != weights->info()->dimension(2)); const size_t weights_w = weights->info()->dimension(0); const size_t weights_h = weights->info()->dimension(1); const size_t weights_z = weights->info()->dimension(2); _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _is_prepared = false; _original_weights = weights; // Should bias be appended ? bool append_bias = (biases != nullptr) && !_is_quantized; // Calculate output shape TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape); // Output width and height const unsigned int conv_w = output_shape.x(); const unsigned int conv_h = output_shape.y(); // Set up intermediate tensors const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0); const size_t conv_size = conv_w * conv_h; // Im2Col configuration TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr); // GEMV configuration DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type(); TensorShape shape_v2mm_out = input->info()->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output); _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h); // Output staged configuration if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset); _output_reshaped.allocator()->allocate(); } // Fill borders on inputs PixelValue zero_in(static_cast(0)); PixelValue zero_w(static_cast(0)); if(_is_quantized) { zero_in = PixelValue(static_cast(input->info()->quantization_info().offset)); zero_w = PixelValue(static_cast(weights->info()->quantization_info().offset)); } BorderSize border_size = _v2mm_kernel.border_size(); _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in); border_size.bottom = 0; _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w); // Allocate intermediate tensors _input_reshaped.allocator()->allocate(); _v2mm_output.allocator()->allocate(); } Status NEDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() != DataLayout::NCHW && input->data_layout() != DataLayout::NHWC); const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool append_bias = (biases != nullptr) && !is_quantized; const TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier); const size_t weights_w = weights->dimension(0); const size_t weights_h = weights->dimension(1); const size_t weights_z = weights->dimension(2); const unsigned int conv_w = output_shape.x(); const unsigned int conv_h = output_shape.y(); const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0); const size_t conv_size = conv_w * conv_h; ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); // Im2Col configuration TensorShape shape_im2col = input->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseIm2ColKernel::validate(input, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier)); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseWeightsReshapeKernel::validate(weights, &weights_reshaped, append_bias ? biases : nullptr)); // GEMV configuration DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type(); TensorShape shape_v2mm_out = input->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output)); TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output, conv_w, conv_h)); if(is_quantized) { ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output)); } return Status{}; } void NEDepthwiseConvolutionLayer::run() { prepare(); NEScheduler::get().schedule(&_im2col_kernel, Window::DimX); NEScheduler::get().schedule(&_v2mm_input_fill_border, Window::DimX); NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX); NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX); if(_is_quantized) { NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); } } void NEDepthwiseConvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run reshape and mark original weights as unused _weights_reshaped.allocator()->allocate(); NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX); NEScheduler::get().schedule(&_v2mm_weights_fill_border, Window::DimX); _original_weights->mark_as_unused(); _is_prepared = true; } }