/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayerUpsample.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/kernels/NEDeconvolutionLayerUpsampleKernel.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Window.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include "arm_compute/runtime/TensorAllocator.h" #include "support/ToolchainSupport.h" #include #include #include using namespace arm_compute; namespace { inline void precompute_offsets(ITensor *offsets, float wr, size_t input_element_size, const std::pair &a, const std::pair &iz, const PadStrideInfo &info) { ARM_COMPUTE_ERROR_ON(nullptr == offsets); Window win; const int padx = info.pad().first; const int pady = info.pad().second; const int ax = a.first; const int ay = a.second; const int offset_width = offsets->info()->dimension(0); const int offset_height = offsets->info()->dimension(1); // The values of ax and ay denote the number of ZEROS to be added on the top and right inner border of the image. // Step value along the XY axis will depend on the number of zeros to be inserted between samples (number of zeros + 1). // Pre-compute the X offset, Y's stride is unknown at this point so we can't precompute Y's offsets for(int yi = ay; yi < (offset_height - pady); yi += (1 + iz.second)) { for(int xi = padx; xi < (offset_width - ax); xi += (1 + iz.first)) { int *ptr = reinterpret_cast(offsets->ptr_to_element(Coordinates(xi, yi))); const size_t in_xi = (xi + 0.5f) * wr; *reinterpret_cast(ptr) = in_xi * input_element_size; } } } } // namespace NEDeconvolutionLayerUpsample::NEDeconvolutionLayerUpsample(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _offsets(), _border_handler(), _upsample() { } void NEDeconvolutionLayerUpsample::configure(ITensor *input, ITensor *output, const std::pair &a, const std::pair &iz, const PadStrideInfo &info) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i) { ARM_COMPUTE_ERROR_ON(input->info()->dimension(i) != output->info()->dimension(i)); } // Get the tensor shape const TensorShape shape(output->info()->dimension(0), output->info()->dimension(1)); // Compute the ratio between source width/height and destination width/height const auto wr = static_cast(input->info()->dimension(0)) / static_cast(output->info()->dimension(0)); const auto hr = static_cast(input->info()->dimension(1)) / static_cast(output->info()->dimension(1)); ARM_COMPUTE_UNUSED(hr); // Get the element size of the input image const size_t input_element_size = input->info()->element_size(); TensorInfo tensor_info_offsets(shape, Format::S32); _offsets.allocator()->init(tensor_info_offsets); _upsample.configure(input, &_offsets, output); // Allocate once the configure methods have been called _offsets.allocator()->allocate(); // Pre-compute offsets for nearest interpolation std::fill_n(reinterpret_cast(_offsets.buffer()), _offsets.info()->total_size() / sizeof(int32_t), -1 * input_element_size); precompute_offsets(&_offsets, wr, input_element_size, a, iz, info); _border_handler.configure(input, _upsample.border_size(), BorderMode::CONSTANT, PixelValue(0)); } void NEDeconvolutionLayerUpsample::run() { NEScheduler::get().schedule(&_border_handler, Window::DimZ); _memory_group.acquire(); NEScheduler::get().schedule(&_upsample, Window::DimY); _memory_group.release(); }