/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { PadStrideInfo compute_upsample_info(const PadStrideInfo &info, uint32_t deconv_pad_x, uint32_t deconv_pad_y) { const unsigned int pad_left = info.pad_left(); const unsigned int pad_right = info.pad_right(); const unsigned int pad_top = info.pad_top(); const unsigned int pad_bottom = info.pad_bottom(); const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape unsigned int deconv_pad_left = pad_right > pad_left ? pad_right - pad_left : 0; unsigned int deconv_pad_right = pad_left > pad_right ? pad_left - pad_right : 0; deconv_pad_x -= deconv_pad_left + deconv_pad_right; ARM_COMPUTE_ERROR_ON((deconv_pad_x % 2) != 0); deconv_pad_left += deconv_pad_x / 2; deconv_pad_right += deconv_pad_x / 2; unsigned int deconv_pad_top = pad_bottom > pad_top ? pad_bottom - pad_top : 0; unsigned int deconv_pad_bottom = pad_top > pad_bottom ? pad_top - pad_bottom : 0; deconv_pad_y -= deconv_pad_top + deconv_pad_bottom; ARM_COMPUTE_ERROR_ON((deconv_pad_y % 2) != 0); deconv_pad_top += deconv_pad_y / 2; deconv_pad_bottom += deconv_pad_y / 2; return PadStrideInfo(stride_x, stride_y, deconv_pad_left, deconv_pad_right, deconv_pad_top, deconv_pad_bottom, DimensionRoundingType::FLOOR); } } // namespace NEDeconvolutionLayer::NEDeconvolutionLayer(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _conv_f(), _upsample_f(), _flip_weights(), _scaled_output(), _weights_flipped(), _flip_axis(), _original_weights(nullptr), _input(nullptr), _info(), _is_prepared(false) { } Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, input); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(weights, input); const unsigned int width_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx)); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) < 1); auto out_dims = deconvolution_output_dimensions(input->dimension(width_idx), input->dimension(height_idx), weights->dimension(width_idx), weights->dimension(height_idx), info); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); if(bias != nullptr) { if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); } } if(output->tensor_shape().total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid."); } uint32_t deconv_pad_x = 0; uint32_t deconv_pad_y = 0; const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y); TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape)); const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); const unsigned int batches_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES); const unsigned int channel_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(batches_idx) != scale_out_info.dimension(batches_idx)); ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(channel_idx) != scale_out_info.dimension(channel_idx)); ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, WeightsInfo())); return Status{}; } void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(NEDeconvolutionLayer::validate(input->info(), weights->info(), (bias == nullptr) ? nullptr : bias->info(), output->info(), info)); const DataLayout data_layout = input->info()->data_layout(); const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); auto out_dims = deconvolution_output_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx), weights->info()->dimension(width_idx), weights->info()->dimension(height_idx), info); const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info()); _input = input; _original_weights = weights; _info = info; _is_prepared = false; const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info()); _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32)); _memory_group.manage(&_scaled_output); _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout)); _flip_weights.configure(weights, &_weights_flipped, &_flip_axis); // setup the function to convolve the upscaled output const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); uint32_t deconv_pad_x = 0; uint32_t deconv_pad_y = 0; const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y); const PadStrideInfo upsample_info = compute_upsample_info(info, deconv_pad_x, deconv_pad_y); TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info()); scale_out_info.set_data_layout(data_layout); _scaled_output.allocator()->init(scale_out_info); _upsample_f.configure(input, &_scaled_output, upsample_info); _conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info); // Setup flip axis data _flip_axis.allocator()->allocate(); auto axis_data = reinterpret_cast(_flip_axis.buffer()); axis_data[0] = static_cast(width_idx); axis_data[1] = static_cast(height_idx); _scaled_output.allocator()->allocate(); } void NEDeconvolutionLayer::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); _upsample_f.run(); _conv_f.run(); } void NEDeconvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights flipping and mark original weights tensor as unused _weights_flipped.allocator()->allocate(); _flip_weights.run(); _original_weights->mark_as_unused(); // Prepare convolution _conv_f.prepare(); _is_prepared = true; } } } // namespace arm_compute