/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/NEON/NEScheduler.h" using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; NEDeconvolutionLayer::NEDeconvolutionLayer(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _conv_f(), _upsample_f(), _flip_weights(), _scaled_output(), _weights_flipped(), _original_weights(nullptr), _input(nullptr), _info(), _inner_border(), _is_prepared(false) { } Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info, unsigned int inner_border_right, unsigned int inner_border_top) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::QASYMM8); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32, DataType::QASYMM8); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->dimension(1)); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) < 1); ARM_COMPUTE_RETURN_ERROR_ON(!info.padding_is_symmetric()); const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; ARM_COMPUTE_RETURN_ERROR_ON_MSG(inner_border_right > stride_x - 1, "inner_border_right must be smaller than stride_x"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(inner_border_top > stride_y - 1, "inner_border_top must be smaller than stride_y"); auto out_dims = deconvolution_output_dimensions(input->dimension(0), input->dimension(1), weights->dimension(0), weights->dimension(1), info.pad().first, info.pad().second, stride_x, stride_y); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); } if(output->tensor_shape().total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid."); } unsigned int padx = 0; unsigned int pady = 0; const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, inner_border_right, inner_border_top, out_dims, padx, pady); TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape)); const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i) { ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(i) != scale_out_info.dimension(i)); } ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, WeightsInfo())); return Status{}; } void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info, unsigned int inner_border_right, unsigned int inner_border_top) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); _input = input; _original_weights = weights; _info = info; _inner_border = std::make_pair(inner_border_right, inner_border_top); _is_prepared = false; const DataLayout data_layout = input->info()->data_layout(); const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout)); _flip_weights.configure(weights, &_weights_flipped); auto out_dims = deconvolution_output_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0), weights->info()->dimension(1), info.pad().first, info.pad().second, stride_x, stride_y); const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info()); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(NEDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info, inner_border_right, inner_border_top)); _memory_group.manage(&_scaled_output); // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape unsigned int padx = 0; unsigned int pady = 0; const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, inner_border_right, inner_border_top, out_dims, padx, pady); TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info()); _scaled_output.allocator()->init(scale_out_info); const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2); _upsample_f.configure(input, &_scaled_output, upsample_info, inner_border_right, inner_border_top); // setup the function to convolve the upscaled output const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); _conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info); _scaled_output.allocator()->allocate(); } Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info) { return NEDeconvolutionLayer::validate(input, weights, bias, output, info, 0, 0); } void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info) { configure(input, weights, bias, output, info, 0, 0); } void NEDeconvolutionLayer::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); _upsample_f.run(); _conv_f.run(); } void NEDeconvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights flipping and mark original weights tensor as unused _weights_flipped.allocator()->allocate(); NEScheduler::get().schedule(&_flip_weights, Window::DimZ); _original_weights->mark_as_unused(); // Prepare convolution _conv_f.prepare(); if(!_weights_flipped.is_used()) { _weights_flipped.allocator()->free(); } _is_prepared = true; } }