/* * Copyright (c) 2017, 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; NEDeconvolutionLayer::NEDeconvolutionLayer(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _conv_f(), _scaled_output(), _input(nullptr), _info(), _inner_border() { } void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info, unsigned int inner_border_right, unsigned int inner_border_top) { ARM_COMPUTE_ERROR_ON_NULLPTR(output); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != weights->info()->dimension(1)); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != 1 && weights->info()->dimension(0) != 3 && weights->info()->dimension(0) != 5); _input = input; _info = info; _inner_border = std::make_pair(inner_border_right, inner_border_top); const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; auto out_dims = deconvolution_output_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0), weights->info()->dimension(1), info.pad().first, info.pad().second, inner_border_right, inner_border_top, stride_x, stride_y); const TensorShape output_shape = deconvolution_output_shape(out_dims, input->info()->tensor_shape(), weights->info()->tensor_shape()); ARM_COMPUTE_ERROR_ON_MSG(output->info()->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid."); ARM_COMPUTE_ERROR_ON_MSG(output->info()->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid."); ARM_COMPUTE_ERROR_ON_MSG(output->info()->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid."); _memory_group.manage(&_scaled_output); // configure scale function // Init and allocate intermmidiate tensor for output, same size as input but the first two axis are the same as the output tensor const TensorInfo scale_out_info(compute_deconvolution_shape(*input->info(), stride_x, stride_y, inner_border_right, inner_border_top, info), 1, input->info()->data_type(), input->info()->fixed_point_position()); _scaled_output.allocator()->init(scale_out_info); // setup the function to convolve the upscaled output const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); _conv_f.configure(&_scaled_output, weights, bias, output, conv_info); _scaled_output.allocator()->allocate(); } void NEDeconvolutionLayer::run() { _memory_group.acquire(); // Initialize _scaled_output buffer const int width_in = _input->info()->dimension(0); const int height_in = _input->info()->dimension(1); const int width_scaled = _scaled_output.info()->dimension(0); const int height_scaled = _scaled_output.info()->dimension(1); const int num_2d_slices = _input->info()->tensor_shape().total_size() / (width_in * height_in); const int stride_x = _info.stride().first; const int stride_y = _info.stride().second; std::fill_n(reinterpret_cast(_scaled_output.buffer()), _scaled_output.info()->tensor_shape().total_size(), 0.f); // scaled_output is the input for the forward convolution. We copy the input elements to scaled_output // and insert rows and columns with zeroes depending on the stride values. for(int slice = 0; slice < num_2d_slices; ++slice) { const int start_x = _info.pad().first; const int start_y = _inner_border.second + _info.pad().second; const int end_y = height_scaled - _info.pad().second; const int end_x = width_scaled - _inner_border.first - _info.pad().first; for(int yi = start_y, in_y = 0; yi < end_y; yi += stride_y, in_y++) { for(int xi = start_x, in_x = 0; xi < end_x; xi += stride_x, in_x++) { const auto in = *(reinterpret_cast(_input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(in_x, in_y, slice)))); *(reinterpret_cast(_scaled_output.buffer() + _scaled_output.info()->offset_element_in_bytes(Coordinates(xi, yi, slice)))) = in; } } } _conv_f.run(); _memory_group.release(); }