/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/NEON/NEScheduler.h" #include #include using namespace arm_compute; NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights() : _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false) { } void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose1xW) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4); if(biases != nullptr) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::QS8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, biases); ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3)); ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1); } // Check if bias are present, if yes they will be embedded to the weights matrix const bool _has_bias = (biases != nullptr); _transpose1xW = transpose1xW; if(transpose1xW) { // Create tensor to store the reshaped weights const unsigned int mat_weights_cols = weights->info()->dimension(3); const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0); TensorShape shape_wr(mat_weights_cols, mat_weights_rows); TensorInfo info_wr(shape_wr, 1, weights->info()->data_type(), weights->info()->fixed_point_position()); _weights_reshaped.allocator()->init(info_wr); _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped); _weights_transposed_kernel.configure(&_weights_reshaped, output); _weights_reshaped.allocator()->allocate(); } else { _weights_reshape_kernel.configure(weights, biases, output); } } void NEConvolutionLayerReshapeWeights::run() { NEScheduler::get().schedule(&_weights_reshape_kernel, 3); if(_transpose1xW) { NEScheduler::get().schedule(&_weights_transposed_kernel, Window::DimY); } } NEConvolutionLayer::NEConvolutionLayer() : _input_im2col_kernel(), _input_interleave_kernel(), _reshape_weights(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(), _gemm_output(), _has_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false) { } void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights, output); ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2)); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4); if(biases != nullptr) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases); ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3)); ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1); } const DataType dt = input->info()->data_type(); const int fixed_point_position = input->info()->fixed_point_position(); _has_bias = (biases != nullptr); _are_weights_reshaped = weights_info.are_reshaped(); // Get parameters from conv_info unsigned int stride_x = 0; unsigned int stride_y = 0; unsigned int pad_x = 0; unsigned int pad_y = 0; std::tie(stride_x, stride_y) = conv_info.stride(); std::tie(pad_x, pad_y) = conv_info.pad(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; const unsigned int kernel_width = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0); const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1); std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height, conv_info); ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one"); // Check if its a "fully connected" convolution _is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1)); unsigned int mat_weights_cols = weights->info()->dimension(3); unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0); // Reshape weights if needed if(_are_weights_reshaped) { mat_weights_cols = output->info()->dimension(2); const unsigned int quarter_reshaped_cols = weights->info()->dimension(0) / 4; mat_weights_rows = (_has_bias ? 1 + quarter_reshaped_cols : quarter_reshaped_cols); } else { if(_is_fully_connected_convolution) { // Create tensor to store the reshaped weights TensorShape shape_wr(mat_weights_cols, mat_weights_rows); TensorInfo info_wr(shape_wr, 1, dt, fixed_point_position); _weights_reshaped.allocator()->init(info_wr); _reshape_weights.configure(weights, biases, &_weights_reshaped, false /* 1xW transpose */); } else { // Create tensor to store transposed weights const float transpose_width = 16.0f / input->info()->element_size(); TensorShape shape_wt(mat_weights_rows * static_cast(transpose_width), static_cast(std::ceil(mat_weights_cols / transpose_width))); TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position); _weights_reshaped.allocator()->init(info_wt); _reshape_weights.configure(weights, biases, &_weights_reshaped, true /* 1xW transpose */); } weights = &_weights_reshaped; } // Create tensor to store im2col reshaped inputs const unsigned int mat_input_cols = mat_weights_rows; const unsigned int mat_input_rows = conv_w * conv_h; TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, mat_input_cols); shape_im2col.set(1, mat_input_rows); shape_im2col.set(2, 1); _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position)); // Create tensor (interleave) to prepare input tensor for GEMM if(!_is_fully_connected_convolution) { TensorShape shape_interleaved = shape_im2col; shape_interleaved.set(0, shape_interleaved.x() * 4); shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f)); _input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position)); } // Create GEMM output tensor TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, mat_input_rows); _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, dt, fixed_point_position)); // Configure kernels _input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _has_bias); if(_is_fully_connected_convolution) { _mm_kernel.configure(&_input_im2col_reshaped, weights, &_gemm_output, 1.0f); } else { _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped); _mm_kernel.configure(&_input_interleaved_reshaped, weights, &_gemm_output, 1.0f); } _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h)); // Allocate intermediate tensor if(!_are_weights_reshaped) { _weights_reshaped.allocator()->allocate(); } _input_im2col_reshaped.allocator()->allocate(); if(!_is_fully_connected_convolution) { _input_interleaved_reshaped.allocator()->allocate(); } _gemm_output.allocator()->allocate(); } void NEConvolutionLayer::run() { // Run weights reshaping (Runs once for every configure) if(!_are_weights_reshaped) { _are_weights_reshaped = true; _reshape_weights.run(); } // Run input reshaping NEScheduler::get().schedule(&_input_im2col_kernel, Window::DimY); if(!_is_fully_connected_convolution) { // Run interleave NEScheduler::get().schedule(&_input_interleave_kernel, Window::DimY); } // Runs matrix multiply on reshaped matrices NEScheduler::get().schedule(&_mm_kernel, Window::DimY); // Reshape output matrix NEScheduler::get().schedule(&_output_col2im_kernel, Window::DimY); }