/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/GLES_COMPUTE/functions/GCFullyConnectedLayer.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h" #include "support/ToolchainSupport.h" #include using namespace arm_compute; void GCFullyConnectedLayerReshapeWeights::configure(const IGCTensor *input, IGCTensor *output) { auto k = arm_compute::support::cpp14::make_unique(); k->configure(input, output); _kernel = std::move(k); } GCFullyConnectedLayer::GCFullyConnectedLayer(std::shared_ptr memory_manager, IWeightsManager *weights_manager) : _memory_group(std::move(memory_manager)), _weights_manager(std::move(weights_manager)), _im2col_kernel(), _reshape_weights_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _reshape_weights_output(), _original_weights(nullptr), _are_weights_reshaped(true), _is_fc_after_conv(true), _accumulate_biases(false) { } void GCFullyConnectedLayer::configure_conv_fc(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output) { ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)))); const DataType dt = input->info()->data_type(); // If the fully connected layer is called after a convolution layer, the input tensor must be linearized // Initialize output tensor for im2col TensorShape shape_im2col; shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)); shape_im2col.set(1, input->info()->dimension(3)); shape_im2col.set(2, input->info()->dimension(4)); shape_im2col.set(3, input->info()->dimension(5)); _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt)); // Configure im2col kernel _memory_group.manage(&_im2col_output); _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false); // Configure matrix multiply kernel _mm_kernel.configure(&_im2col_output, weights, output, 1.0f, false); // Allocate the output tensor for im2col once all the configure methods have been called _im2col_output.allocator()->allocate(); } void GCFullyConnectedLayer::configure_fc_fc(const IGCTensor *input, const IGCTensor *weights, IGCTensor *output) { ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1)); // Configure matrix multiply kernel _mm_kernel.configure(input, weights, output, 1.0f, false); } void GCFullyConnectedLayer::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *biases, IGCTensor *output, FullyConnectedLayerInfo fc_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 2); _original_weights = weights; _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true; _is_fc_after_conv = true; _accumulate_biases = false; if(biases != nullptr) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); _accumulate_biases = true; // Configure accumulate biases kernel _accumulate_biases_kernel.configure(output, biases); } // With the Fully Connected layer we can have 4 different cases: // 1) Convolution layer -> Fully Connected layer without batches // 2) Fully Connected layer -> Fully Connected layer without batches // 3) Convolution layer -> Fully Connected layer with batches // 4) Fully Connected layer -> Fully Connected layer with batches const IGCTensor *weights_to_use = weights; if(!_are_weights_reshaped) { weights_to_use = &_reshape_weights_output; // Reshape the weights _reshape_weights_kernel.configure(weights, &_reshape_weights_output); } // Check if we have a fully connected layer with batches const bool is_batched_fc_layer = output->info()->dimension(1) > 1; if(is_batched_fc_layer) { _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3, input->info()->tensor_shape().cend(), output->info()->tensor_shape().cbegin() + 1)); } else { _is_fc_after_conv = input->info()->num_dimensions() > 1; } if(_is_fc_after_conv) { // Fully Connected layer after a Convolution Layer without batches configure_conv_fc(input, weights_to_use, output); } else { // Fully Connected layer after a Fully Connected Layer without batches configure_fc_fc(input, weights_to_use, output); } ARM_COMPUTE_ERROR_ON(fc_info.retain_internal_weights && _reshape_weights_output.gc_buffer() == 0); _are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights; } void GCFullyConnectedLayer::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); // Linearize input if it comes from a convolutional layer if(_is_fc_after_conv) { GCScheduler::get().dispatch(_im2col_kernel, false); } if(!_are_weights_reshaped || _is_fc_after_conv) { GCScheduler::get().memory_barrier(); } // Run matrix multiply GCScheduler::get().dispatch(_mm_kernel, !_accumulate_biases); // Accumulate biases if provided if(_accumulate_biases) { GCScheduler::get().memory_barrier(); GCScheduler::get().dispatch(_accumulate_biases_kernel); } } void GCFullyConnectedLayer::prepare() { // Reshape of the weights (happens only once) if(!_are_weights_reshaped) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run reshape weights kernel and mark weights as unused _reshape_weights_output.allocator()->allocate(); _reshape_weights_kernel.run(); // Mark original weights tensor as unused _original_weights->mark_as_unused(); _are_weights_reshaped = true; } }