/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CPP/functions/CPPDetectionOutputLayer.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Validate.h" #include "support/ToolchainSupport.h" #include namespace arm_compute { namespace { Status detection_layer_validate_arguments(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_loc, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, input_conf, input_priorbox); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_loc->num_dimensions() > 2, "The location input tensor should be [C1, N]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_conf->num_dimensions() > 2, "The location input tensor should be [C2, N]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_priorbox->num_dimensions() > 3, "The priorbox input tensor should be [C3, 2, N]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.eta() <= 0.f && info.eta() > 1.f, "Eta should be between 0 and 1"); const int num_priors = input_priorbox->tensor_shape()[0] / 4; ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast((num_priors * info.num_loc_classes() * 4)) != input_loc->tensor_shape()[0], "Number of priors must match number of location predictions."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast((num_priors * info.num_classes())) != input_conf->tensor_shape()[0], "Number of priors must match number of confidence predictions."); // Validate configured output if(output->total_size() != 0) { const unsigned int max_size = info.keep_top_k() * (input_loc->num_dimensions() > 1 ? input_loc->dimension(1) : 1); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), TensorShape(7U, max_size)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, output); } return Status{}; } /** Function used to sort pair in descend order based on the score (first) value. */ template bool SortScorePairDescend(const std::pair &pair1, const std::pair &pair2) { return pair1.first > pair2.first; } /** Get location predictions from input_loc. * * @param[in] input_loc The input location prediction. * @param[in] num The number of images. * @param[in] num_priors number of predictions per class. * @param[in] num_loc_classes number of location classes. It is 1 if share_location is true, * and is equal to number of classes needed to predict otherwise. * @param[in] share_location If true, all classes share the same location prediction. * @param[out] all_location_predictions All the location predictions. * */ void retrieve_all_loc_predictions(const ITensor *input_loc, const int num, const int num_priors, const int num_loc_classes, const bool share_location, std::vector &all_location_predictions) { for(int i = 0; i < num; ++i) { for(int c = 0; c < num_loc_classes; ++c) { int label = share_location ? -1 : c; if(all_location_predictions[i].find(label) == all_location_predictions[i].end()) { all_location_predictions[i][label].resize(num_priors); } else { ARM_COMPUTE_ERROR_ON(all_location_predictions[i][label].size() != static_cast(num_priors)); break; } } } for(int i = 0; i < num; ++i) { for(int p = 0; p < num_priors; ++p) { for(int c = 0; c < num_loc_classes; ++c) { const int label = share_location ? -1 : c; const int base_ptr = i * num_priors * num_loc_classes * 4 + p * num_loc_classes * 4 + c * 4; //xmin, ymin, xmax, ymax all_location_predictions[i][label][p][0] = *reinterpret_cast(input_loc->ptr_to_element(Coordinates(base_ptr))); all_location_predictions[i][label][p][1] = *reinterpret_cast(input_loc->ptr_to_element(Coordinates(base_ptr + 1))); all_location_predictions[i][label][p][2] = *reinterpret_cast(input_loc->ptr_to_element(Coordinates(base_ptr + 2))); all_location_predictions[i][label][p][3] = *reinterpret_cast(input_loc->ptr_to_element(Coordinates(base_ptr + 3))); } } } } /** Get confidence predictions from input_conf. * * @param[in] input_loc The input location prediction. * @param[in] num The number of images. * @param[in] num_priors Number of predictions per class. * @param[in] num_loc_classes Number of location classes. It is 1 if share_location is true, * and is equal to number of classes needed to predict otherwise. * @param[out] all_location_predictions All the location predictions. * */ void retrieve_all_conf_scores(const ITensor *input_conf, const int num, const int num_priors, const int num_classes, std::vector>> &all_confidence_scores) { std::vector tmp_buffer; tmp_buffer.resize(num * num_priors * num_classes); for(int i = 0; i < num; ++i) { for(int c = 0; c < num_classes; ++c) { for(int p = 0; p < num_priors; ++p) { tmp_buffer[i * num_classes * num_priors + c * num_priors + p] = *reinterpret_cast(input_conf->ptr_to_element(Coordinates(i * num_classes * num_priors + p * num_classes + c))); } } } for(int i = 0; i < num; ++i) { for(int c = 0; c < num_classes; ++c) { all_confidence_scores[i][c].resize(num_priors); all_confidence_scores[i][c].assign(&tmp_buffer[i * num_classes * num_priors + c * num_priors], &tmp_buffer[i * num_classes * num_priors + c * num_priors + num_priors]); } } } /** Get prior boxes from input_priorbox. * * @param[in] input_priorbox The input location prediction. * @param[in] num_priors Number of priors. * @param[in] num_loc_classes number of location classes. It is 1 if share_location is true, * and is equal to number of classes needed to predict otherwise. * @param[out] all_prior_bboxes If true, all classes share the same location prediction. * @param[out] all_location_predictions All the location predictions. * */ void retrieve_all_priorbox(const ITensor *input_priorbox, const int num_priors, std::vector &all_prior_bboxes, std::vector> &all_prior_variances) { for(int i = 0; i < num_priors; ++i) { all_prior_bboxes[i] = { { *reinterpret_cast(input_priorbox->ptr_to_element(Coordinates(i * 4))), *reinterpret_cast(input_priorbox->ptr_to_element(Coordinates(i * 4 + 1))), *reinterpret_cast(input_priorbox->ptr_to_element(Coordinates(i * 4 + 2))), *reinterpret_cast(input_priorbox->ptr_to_element(Coordinates(i * 4 + 3))) } }; } std::array var({ { 0, 0, 0, 0 } }); for(int i = 0; i < num_priors; ++i) { for(int j = 0; j < 4; ++j) { var[j] = *reinterpret_cast(input_priorbox->ptr_to_element(Coordinates((num_priors + i) * 4 + j))); } all_prior_variances[i] = var; } } /** Decode a bbox according to a prior bbox. * * @param[in] prior_bbox The input prior bounding boxes. * @param[in] prior_variance The corresponding input variance. * @param[in] code_type The detection output code type used to decode the results. * @param[in] variance_encoded_in_target If true, the variance is encoded in target. * @param[in] clip_bbox If true, the results should be between 0.f and 1.f. * @param[in] bbox The input bbox to decode * @param[out] decode_bbox The decoded bboxes. * */ void DecodeBBox(const NormalizedBBox &prior_bbox, const std::array &prior_variance, const DetectionOutputLayerCodeType code_type, const bool variance_encoded_in_target, const bool clip_bbox, const NormalizedBBox &bbox, NormalizedBBox &decode_bbox) { // if the variance is encoded in target, we simply need to add the offset predictions // otherwise we need to scale the offset accordingly. switch(code_type) { case DetectionOutputLayerCodeType::CORNER: { decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]); decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]); decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]); decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]); break; } case DetectionOutputLayerCodeType::CENTER_SIZE: { const float prior_width = prior_bbox[2] - prior_bbox[0]; const float prior_height = prior_bbox[3] - prior_bbox[1]; // Check if the prior width and height are right ARM_COMPUTE_ERROR_ON(prior_width <= 0.f); ARM_COMPUTE_ERROR_ON(prior_height <= 0.f); const float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.; const float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.; const float decode_bbox_center_x = (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width + prior_center_x; const float decode_bbox_center_y = (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height + prior_center_y; const float decode_bbox_width = (variance_encoded_in_target ? std::exp(bbox[2]) : std::exp(prior_variance[2] * bbox[2])) * prior_width; const float decode_bbox_height = (variance_encoded_in_target ? std::exp(bbox[3]) : std::exp(prior_variance[3] * bbox[3])) * prior_height; decode_bbox[0] = (decode_bbox_center_x - decode_bbox_width / 2.f); decode_bbox[1] = (decode_bbox_center_y - decode_bbox_height / 2.f); decode_bbox[2] = (decode_bbox_center_x + decode_bbox_width / 2.f); decode_bbox[3] = (decode_bbox_center_y + decode_bbox_height / 2.f); break; } case DetectionOutputLayerCodeType::CORNER_SIZE: { const float prior_width = prior_bbox[2] - prior_bbox[0]; const float prior_height = prior_bbox[3] - prior_bbox[1]; // Check if the prior width and height are greater than 0 ARM_COMPUTE_ERROR_ON(prior_width <= 0.f); ARM_COMPUTE_ERROR_ON(prior_height <= 0.f); decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width; decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height; decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]) * prior_width; decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]) * prior_height; break; } default: ARM_COMPUTE_ERROR("Unsupported Detection Output Code Type."); } if(clip_bbox) { for(auto &d_bbox : decode_bbox) { d_bbox = utility::clamp(d_bbox, 0.f, 1.f); } } } /** Do non maximum suppression given bboxes and scores. * * @param[in] bboxes The input bounding boxes. * @param[in] scores The corresponding input confidence. * @param[in] score_threshold The threshold used to filter detection results. * @param[in] nms_threshold The threshold used in non maximum suppression. * @param[in] eta Adaptation rate for nms threshold. * @param[in] top_k If not -1, keep at most top_k picked indices. * @param[out] indices The kept indices of bboxes after nms. * */ void ApplyNMSFast(const std::vector &bboxes, const std::vector &scores, const float score_threshold, const float nms_threshold, const float eta, const int top_k, std::vector &indices) { ARM_COMPUTE_ERROR_ON_MSG(bboxes.size() != scores.size(), "bboxes and scores have different size."); // Get top_k scores (with corresponding indices). std::list> score_index_vec; // Generate index score pairs. for(size_t i = 0; i < scores.size(); ++i) { if(scores[i] > score_threshold) { score_index_vec.emplace_back(std::make_pair(scores[i], i)); } } // Sort the score pair according to the scores in descending order score_index_vec.sort(SortScorePairDescend); // Keep top_k scores if needed. const int score_index_vec_size = score_index_vec.size(); if(top_k > -1 && top_k < score_index_vec_size) { score_index_vec.resize(top_k); } // Do nms. float adaptive_threshold = nms_threshold; indices.clear(); while(!score_index_vec.empty()) { const int idx = score_index_vec.front().second; bool keep = true; for(int kept_idx : indices) { if(keep) { // Compute the jaccard (intersection over union IoU) overlap between two bboxes. NormalizedBBox intersect_bbox = std::array({ { 0, 0, 0, 0 } }); if(bboxes[kept_idx][0] > bboxes[idx][2] || bboxes[kept_idx][2] < bboxes[idx][0] || bboxes[kept_idx][1] > bboxes[idx][3] || bboxes[kept_idx][3] < bboxes[idx][1]) { intersect_bbox = std::array({ { 0, 0, 0, 0 } }); } else { intersect_bbox = std::array({ { std::max(bboxes[idx][0], bboxes[kept_idx][0]), std::max(bboxes[idx][1], bboxes[kept_idx][1]), std::min(bboxes[idx][2], bboxes[kept_idx][2]), std::min(bboxes[idx][3], bboxes[kept_idx][3]) } }); } float intersect_width = intersect_bbox[2] - intersect_bbox[0]; float intersect_height = intersect_bbox[3] - intersect_bbox[1]; float overlap = 0.f; if(intersect_width > 0 && intersect_height > 0) { float intersect_size = intersect_width * intersect_height; float bbox1_size = (bboxes[idx][2] < bboxes[idx][0] || bboxes[idx][3] < bboxes[idx][1]) ? 0.f : (bboxes[idx][2] - bboxes[idx][0]) * (bboxes[idx][3] - bboxes[idx][1]); //BBoxSize(bboxes[idx]); float bbox2_size = (bboxes[kept_idx][2] < bboxes[kept_idx][0] || bboxes[kept_idx][3] < bboxes[kept_idx][1]) ? 0.f : (bboxes[kept_idx][2] - bboxes[kept_idx][0]) * (bboxes[kept_idx][3] - bboxes[kept_idx][1]); // BBoxSize(bboxes[kept_idx]); overlap = intersect_size / (bbox1_size + bbox2_size - intersect_size); } keep = (overlap <= adaptive_threshold); } else { break; } } if(keep) { indices.push_back(idx); } score_index_vec.erase(score_index_vec.begin()); if(keep && eta < 1.f && adaptive_threshold > 0.5f) { adaptive_threshold *= eta; } } } Status non_max_suppression_validate_arguments(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *indices, unsigned int max_output_size, const float score_threshold, const float nms_threshold) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(bboxes, scores, indices); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bboxes, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(scores, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(bboxes->num_dimensions() > 2, "The bboxes tensor must be a 2-D float tensor of shape [4, num_boxes]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "The scores tensor must be a 1-D float tensor of shape [num_boxes]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(indices->num_dimensions() > 1, "The indices must be 1-D integer tensor of shape [M], where max_output_size <= M"); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(bboxes, scores); ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "Scores must be a 1D float tensor"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(indices->dimension(0) == 0, "Indices tensor must be bigger than 0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(max_output_size == 0, "Max size cannot be 0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(nms_threshold < 0.f || nms_threshold > 1.f, "Threshould must be in [0,1]"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(score_threshold < 0.f || score_threshold > 1.f, "Threshould must be in [0,1]"); return Status{}; } } // namespace CPPNonMaximumSuppression::CPPNonMaximumSuppression() : _bboxes(nullptr), _scores(nullptr), _indices(nullptr), _max_output_size(0), _score_threshold(0.f), _nms_threshold(0.f) { } void CPPNonMaximumSuppression::configure( const ITensor *bboxes, const ITensor *scores, ITensor *indices, unsigned int max_output_size, const float score_threshold, const float nms_threshold) { ARM_COMPUTE_ERROR_ON_NULLPTR(bboxes, scores, indices); ARM_COMPUTE_ERROR_THROW_ON(non_max_suppression_validate_arguments(bboxes->info(), scores->info(), indices->info(), max_output_size, score_threshold, nms_threshold)); // copy scores also to a vector _bboxes = bboxes; _scores = scores; _indices = indices; _nms_threshold = nms_threshold; _max_output_size = max_output_size; _score_threshold = score_threshold; } Status CPPNonMaximumSuppression::validate( const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *indices, unsigned int max_output_size, const float score_threshold, const float nms_threshold) { ARM_COMPUTE_RETURN_ON_ERROR(non_max_suppression_validate_arguments(bboxes, scores, indices, max_output_size, score_threshold, nms_threshold)); return Status{}; } void extract_bounding_boxes_from_tensor(const ITensor *bboxes, std::vector &bboxes_vector) { Window input_win; input_win.use_tensor_dimensions(bboxes->info()->tensor_shape()); input_win.set_dimension_step(0U, 4U); input_win.set_dimension_step(1U, 1U); Iterator input(bboxes, input_win); auto f = [&bboxes_vector, &input](const Coordinates &) { const auto input_ptr = reinterpret_cast(input.ptr()); bboxes_vector.push_back(NormalizedBBox({ { *input_ptr, *(input_ptr + 1), *(2 + input_ptr), *(3 + input_ptr) } })); }; execute_window_loop(input_win, f, input); } void extract_scores_from_tensor(const ITensor *scores, std::vector &scores_vector) { Window window; window.use_tensor_dimensions(scores->info()->tensor_shape()); Iterator it(scores, window); auto f = [&it, &scores_vector](const Coordinates &) { const auto input_ptr = reinterpret_cast(it.ptr()); scores_vector.push_back(*input_ptr); }; execute_window_loop(window, f, it); } void CPPNonMaximumSuppression::run() { std::vector bboxes_vector; std::vector scores_vector; std::vector indices_vector; extract_bounding_boxes_from_tensor(_bboxes, bboxes_vector); extract_scores_from_tensor(_scores, scores_vector); ApplyNMSFast(bboxes_vector, scores_vector, _score_threshold, _nms_threshold, 1, -1 /* disable top_k */, indices_vector); std::copy_n(indices_vector.begin(), std::min(indices_vector.size(), _indices->info()->dimension(0)), reinterpret_cast(_indices->ptr_to_element(Coordinates(0)))); } CPPDetectionOutputLayer::CPPDetectionOutputLayer() : _input_loc(nullptr), _input_conf(nullptr), _input_priorbox(nullptr), _output(nullptr), _info(), _num_priors(), _num(), _all_location_predictions(), _all_confidence_scores(), _all_prior_bboxes(), _all_prior_variances(), _all_decode_bboxes(), _all_indices() { } void CPPDetectionOutputLayer::configure(const ITensor *input_loc, const ITensor *input_conf, const ITensor *input_priorbox, ITensor *output, DetectionOutputLayerInfo info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output); // Output auto initialization if not yet initialized // Since the number of bboxes to kept is unknown before nms, the shape is set to the maximum // The maximum is keep_top_k * input_loc_size[1] // Each row is a 7 dimension std::vector, which stores [image_id, label, confidence, xmin, ymin, xmax, ymax] const unsigned int max_size = info.keep_top_k() * (input_loc->info()->num_dimensions() > 1 ? input_loc->info()->dimension(1) : 1); auto_init_if_empty(*output->info(), input_loc->info()->clone()->set_tensor_shape(TensorShape(7U, max_size))); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(detection_layer_validate_arguments(input_loc->info(), input_conf->info(), input_priorbox->info(), output->info(), info)); _input_loc = input_loc; _input_conf = input_conf; _input_priorbox = input_priorbox; _output = output; _info = info; _num_priors = input_priorbox->info()->dimension(0) / 4; _num = (_input_loc->info()->num_dimensions() > 1 ? _input_loc->info()->dimension(1) : 1); _all_location_predictions.resize(_num); _all_confidence_scores.resize(_num); _all_prior_bboxes.resize(_num_priors); _all_prior_variances.resize(_num_priors); _all_decode_bboxes.resize(_num); for(int i = 0; i < _num; ++i) { for(int c = 0; c < _info.num_loc_classes(); ++c) { const int label = _info.share_location() ? -1 : c; if(label == _info.background_label_id()) { // Ignore background class. continue; } _all_decode_bboxes[i][label].resize(_num_priors); } } _all_indices.resize(_num); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); } Status CPPDetectionOutputLayer::validate(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info) { ARM_COMPUTE_RETURN_ON_ERROR(detection_layer_validate_arguments(input_loc, input_conf, input_priorbox, output, info)); return Status{}; } void CPPDetectionOutputLayer::run() { // Retrieve all location predictions. retrieve_all_loc_predictions(_input_loc, _num, _num_priors, _info.num_loc_classes(), _info.share_location(), _all_location_predictions); // Retrieve all confidences. retrieve_all_conf_scores(_input_conf, _num, _num_priors, _info.num_classes(), _all_confidence_scores); // Retrieve all prior bboxes. retrieve_all_priorbox(_input_priorbox, _num_priors, _all_prior_bboxes, _all_prior_variances); // Decode all loc predictions to bboxes const bool clip_bbox = false; for(int i = 0; i < _num; ++i) { for(int c = 0; c < _info.num_loc_classes(); ++c) { const int label = _info.share_location() ? -1 : c; if(label == _info.background_label_id()) { // Ignore background class. continue; } ARM_COMPUTE_ERROR_ON_MSG(_all_location_predictions[i].find(label) == _all_location_predictions[i].end(), "Could not find location predictions for label %d.", label); const std::vector &label_loc_preds = _all_location_predictions[i].find(label)->second; const int num_bboxes = _all_prior_bboxes.size(); ARM_COMPUTE_ERROR_ON(_all_prior_variances[i].size() != 4); for(int j = 0; j < num_bboxes; ++j) { DecodeBBox(_all_prior_bboxes[j], _all_prior_variances[j], _info.code_type(), _info.variance_encoded_in_target(), clip_bbox, label_loc_preds[j], _all_decode_bboxes[i][label][j]); } } } int num_kept = 0; for(int i = 0; i < _num; ++i) { const LabelBBox &decode_bboxes = _all_decode_bboxes[i]; const std::map> &conf_scores = _all_confidence_scores[i]; std::map> indices; int num_det = 0; for(int c = 0; c < _info.num_classes(); ++c) { if(c == _info.background_label_id()) { // Ignore background class continue; } const int label = _info.share_location() ? -1 : c; if(conf_scores.find(c) == conf_scores.end() || decode_bboxes.find(label) == decode_bboxes.end()) { ARM_COMPUTE_ERROR("Could not find predictions for label %d.", label); } const std::vector &scores = conf_scores.find(c)->second; const std::vector &bboxes = decode_bboxes.find(label)->second; ApplyNMSFast(bboxes, scores, _info.confidence_threshold(), _info.nms_threshold(), _info.eta(), _info.top_k(), indices[c]); num_det += indices[c].size(); } int num_to_add = 0; if(_info.keep_top_k() > -1 && num_det > _info.keep_top_k()) { std::vector>> score_index_pairs; for(auto const &it : indices) { const int label = it.first; const std::vector &label_indices = it.second; if(conf_scores.find(label) == conf_scores.end()) { ARM_COMPUTE_ERROR("Could not find predictions for label %d.", label); } const std::vector &scores = conf_scores.find(label)->second; for(auto idx : label_indices) { ARM_COMPUTE_ERROR_ON(idx > static_cast(scores.size())); score_index_pairs.emplace_back(std::make_pair(scores[idx], std::make_pair(label, idx))); } } // Keep top k results per image. std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend>); score_index_pairs.resize(_info.keep_top_k()); // Store the new indices. std::map> new_indices; for(auto score_index_pair : score_index_pairs) { int label = score_index_pair.second.first; int idx = score_index_pair.second.second; new_indices[label].push_back(idx); } _all_indices[i] = new_indices; num_to_add = _info.keep_top_k(); } else { _all_indices[i] = indices; num_to_add = num_det; } num_kept += num_to_add; } //Update the valid region of the ouput to mark the exact number of detection _output->info()->set_valid_region(ValidRegion(Coordinates(0, 0), TensorShape(7, num_kept))); int count = 0; for(int i = 0; i < _num; ++i) { const std::map> &conf_scores = _all_confidence_scores[i]; const LabelBBox &decode_bboxes = _all_decode_bboxes[i]; for(auto &it : _all_indices[i]) { const int label = it.first; const std::vector &scores = conf_scores.find(label)->second; const int loc_label = _info.share_location() ? -1 : label; if(conf_scores.find(label) == conf_scores.end() || decode_bboxes.find(loc_label) == decode_bboxes.end()) { // Either if there are no confidence predictions // or there are no location predictions for current label. ARM_COMPUTE_ERROR("Could not find predictions for the label %d.", label); } const std::vector &bboxes = decode_bboxes.find(loc_label)->second; const std::vector &indices = it.second; for(auto idx : indices) { *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7)))) = i; *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7 + 1)))) = label; *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7 + 2)))) = scores[idx]; *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7 + 3)))) = bboxes[idx][0]; *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7 + 4)))) = bboxes[idx][1]; *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7 + 5)))) = bboxes[idx][2]; *(reinterpret_cast(_output->ptr_to_element(Coordinates(count * 7 + 6)))) = bboxes[idx][3]; ++count; } } } } } // namespace arm_compute