/* * Copyright (c) 2016-2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CPP/CPPScheduler.h" #include "arm_compute/core/CPP/ICPPKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/runtime/CPUUtils.h" #include "support/Mutex.h" #include #include #include #include #include #include #include namespace arm_compute { namespace { class ThreadFeeder { public: /** Constructor * * @param[in] start First value that will be returned by the feeder * @param[in] end End condition (The last value returned by get_next() will be end - 1) */ explicit ThreadFeeder(unsigned int start = 0, unsigned int end = 0) : _atomic_counter(start), _end(end) { } /** Return the next element in the range if there is one. * * @param[out] next Will contain the next element if there is one. * * @return False if the end of the range has been reached and next wasn't set. */ bool get_next(unsigned int &next) { next = atomic_fetch_add_explicit(&_atomic_counter, 1u, std::memory_order_relaxed); return next < _end; } private: std::atomic_uint _atomic_counter; const unsigned int _end; }; /** Given two dimensions and a maxium number of threads to utilise, calcualte the best * combination of threads that fit in (mutliplied together) max_threads. * * This algorithm assumes that work in either of the dimensions is equally difficult * to compute * * @returns [m_nthreads, n_nthreads] A pair of the threads that should be used in each dimension */ std::pair split_2d(unsigned max_threads, std::size_t m, std::size_t n) { /* * We want the same ratio of threads in M & N to the ratio of m and n problem size * * Therefore: mt/nt == m/n where mt*nt == max_threads * * max_threads/nt = mt & (max_threads/nt) * (m/n) = nt * nt^2 = max_threads * (m/n) * nt = sqrt( max_threads * (m/n) ) */ //ratio of m to n in problem dimensions double ratio = m / static_cast(n); // nt = sqrt(max_threads * (m / n) ) const unsigned adjusted = std::round( std::sqrt(max_threads * ratio)); //find the nearest factor of max_threads for(unsigned i = 0; i != adjusted; ++i) { //try down const unsigned adj_down = adjusted - i; if(max_threads % adj_down == 0) { return { adj_down, max_threads / adj_down }; } //try up const unsigned adj_up = adjusted + i; if(max_threads % adj_up == 0) { return { adj_up, max_threads / adj_up }; } } //we didn't find anything so lets bail out with maxes biased to the largest dimension if(m > n) { return { std::min(m, max_threads), 1 }; } else { return { 1, std::min(n, max_threads) }; } } /** Execute workloads[info.thread_id] first, then call the feeder to get the index of the next workload to run. * * Will run workloads until the feeder reaches the end of its range. * * @param[in] workloads The array of workloads * @param[in,out] feeder The feeder indicating which workload to execute next. * @param[in] info Threading and CPU info. */ void process_workloads(std::vector &workloads, ThreadFeeder &feeder, const ThreadInfo &info) { unsigned int workload_index = info.thread_id; do { ARM_COMPUTE_ERROR_ON(workload_index >= workloads.size()); workloads[workload_index](info); } while(feeder.get_next(workload_index)); } } //namespace struct CPPScheduler::Impl final { explicit Impl(unsigned int thread_hint) : _num_threads(thread_hint), _threads(_num_threads - 1) { } void set_num_threads(unsigned int num_threads, unsigned int thead_hint) { _num_threads = num_threads == 0 ? thead_hint : num_threads; _threads.resize(_num_threads - 1); } unsigned int num_threads() const { return _num_threads; } void run_workloads(std::vector &workloads); class Thread; unsigned int _num_threads; std::list _threads; arm_compute::Mutex _run_workloads_mutex{}; }; class CPPScheduler::Impl::Thread final { public: /** Start a new thread. */ Thread(); Thread(const Thread &) = delete; Thread &operator=(const Thread &) = delete; Thread(Thread &&) = delete; Thread &operator=(Thread &&) = delete; /** Destructor. Make the thread join. */ ~Thread(); /** Request the worker thread to start executing workloads. * * The thread will start by executing workloads[info.thread_id] and will then call the feeder to * get the index of the following workload to run. * * @note This function will return as soon as the workloads have been sent to the worker thread. * wait() needs to be called to ensure the execution is complete. */ void start(std::vector *workloads, ThreadFeeder &feeder, const ThreadInfo &info); /** Wait for the current kernel execution to complete. */ void wait(); /** Function ran by the worker thread. */ void worker_thread(); private: std::thread _thread{}; ThreadInfo _info{}; std::vector *_workloads{ nullptr }; ThreadFeeder *_feeder{ nullptr }; std::mutex _m{}; std::condition_variable _cv{}; bool _wait_for_work{ false }; bool _job_complete{ true }; std::exception_ptr _current_exception{ nullptr }; }; CPPScheduler::Impl::Thread::Thread() { _thread = std::thread(&Thread::worker_thread, this); } CPPScheduler::Impl::Thread::~Thread() { // Make sure worker thread has ended if(_thread.joinable()) { ThreadFeeder feeder; start(nullptr, feeder, ThreadInfo()); _thread.join(); } } void CPPScheduler::Impl::Thread::start(std::vector *workloads, ThreadFeeder &feeder, const ThreadInfo &info) { _workloads = workloads; _feeder = &feeder; _info = info; { std::lock_guard lock(_m); _wait_for_work = true; _job_complete = false; } _cv.notify_one(); } void CPPScheduler::Impl::Thread::wait() { { std::unique_lock lock(_m); _cv.wait(lock, [&] { return _job_complete; }); } if(_current_exception) { std::rethrow_exception(_current_exception); } } void CPPScheduler::Impl::Thread::worker_thread() { while(true) { std::unique_lock lock(_m); _cv.wait(lock, [&] { return _wait_for_work; }); _wait_for_work = false; _current_exception = nullptr; // Time to exit if(_workloads == nullptr) { return; } #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED try { #endif /* ARM_COMPUTE_EXCEPTIONS_ENABLED */ process_workloads(*_workloads, *_feeder, _info); #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch(...) { _current_exception = std::current_exception(); } #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ _job_complete = true; lock.unlock(); _cv.notify_one(); } } /* * This singleton has been deprecated and will be removed in the next release */ CPPScheduler &CPPScheduler::get() { static CPPScheduler scheduler; return scheduler; } CPPScheduler::CPPScheduler() : _impl(support::cpp14::make_unique(num_threads_hint())) { } CPPScheduler::~CPPScheduler() = default; void CPPScheduler::set_num_threads(unsigned int num_threads) { // No changes in the number of threads while current workloads are running arm_compute::lock_guard lock(_impl->_run_workloads_mutex); _impl->set_num_threads(num_threads, num_threads_hint()); } unsigned int CPPScheduler::num_threads() const { return _impl->num_threads(); } #ifndef DOXYGEN_SKIP_THIS void CPPScheduler::run_workloads(std::vector &workloads) { // Mutex to ensure other threads won't interfere with the setup of the current thread's workloads // Other thread's workloads will be scheduled after the current thread's workloads have finished // This is not great because different threads workloads won't run in parallel but at least they // won't interfere each other and deadlock. arm_compute::lock_guard lock(_impl->_run_workloads_mutex); const unsigned int num_threads = std::min(_impl->num_threads(), static_cast(workloads.size())); if(num_threads < 1) { return; } ThreadFeeder feeder(num_threads, workloads.size()); ThreadInfo info; info.cpu_info = &_cpu_info; info.num_threads = num_threads; unsigned int t = 0; auto thread_it = _impl->_threads.begin(); for(; t < num_threads - 1; ++t, ++thread_it) { info.thread_id = t; thread_it->start(&workloads, feeder, info); } info.thread_id = t; process_workloads(workloads, feeder, info); #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED try { #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ for(auto &thread : _impl->_threads) { thread.wait(); } #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch(const std::system_error &e) { std::cerr << "Caught system_error with code " << e.code() << " meaning " << e.what() << '\n'; } #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ } #endif /* DOXYGEN_SKIP_THIS */ void CPPScheduler::schedule_common(ICPPKernel *kernel, const Hints &hints, const InputTensorMap &inputs, const OutputTensorMap &outputs) { ARM_COMPUTE_ERROR_ON_MSG(!kernel, "The child class didn't set the kernel"); const Window &max_window = kernel->window(); if(hints.split_dimension() == IScheduler::split_dimensions_all) { /* * if the split dim is size_t max then this signals we should parallelise over * all dimensions */ const std::size_t m = max_window.num_iterations(Window::DimX); const std::size_t n = max_window.num_iterations(Window::DimY); //in c++17 this can be swapped for auto [ m_threads, n_threads ] = split_2d(... unsigned m_threads, n_threads; std::tie(m_threads, n_threads) = split_2d(_impl->_num_threads, m, n); std::vector workloads; for(unsigned int ni = 0; ni != n_threads; ++ni) { for(unsigned int mi = 0; mi != m_threads; ++mi) { workloads.push_back( [ni, mi, m_threads, n_threads, &max_window, &kernel](const ThreadInfo & info) { //narrow the window to our mi-ni workload Window win = max_window.split_window(Window::DimX, mi, m_threads) .split_window(Window::DimY, ni, n_threads); win.validate(); Window thread_locator; thread_locator.set(Window::DimX, Window::Dimension(mi, m_threads)); thread_locator.set(Window::DimY, Window::Dimension(ni, n_threads)); thread_locator.validate(); kernel->run_nd(win, info, thread_locator); }); } } run_workloads(workloads); } else { const unsigned int num_iterations = max_window.num_iterations(hints.split_dimension()); const unsigned int num_threads = std::min(num_iterations, _impl->_num_threads); if(num_iterations == 0) { return; } if(!kernel->is_parallelisable() || num_threads == 1) { ThreadInfo info; info.cpu_info = &_cpu_info; if(inputs.empty()) { kernel->run(max_window, info); } else { kernel->run_op(inputs, outputs, max_window, info); } } else { unsigned int num_windows = 0; switch(hints.strategy()) { case StrategyHint::STATIC: num_windows = num_threads; break; case StrategyHint::DYNAMIC: { const unsigned int granule_threshold = (hints.threshold() <= 0) ? num_threads : static_cast(hints.threshold()); // Make sure we don't use some windows which are too small as this might create some contention on the ThreadFeeder num_windows = num_iterations > granule_threshold ? granule_threshold : num_iterations; break; } default: ARM_COMPUTE_ERROR("Unknown strategy"); } std::vector workloads(num_windows); for(unsigned int t = 0; t < num_windows; t++) { //Capture 't' by copy, all the other variables by reference: workloads[t] = [t, &hints, &max_window, &num_windows, &kernel, &inputs, &outputs](const ThreadInfo & info) { Window win = max_window.split_window(hints.split_dimension(), t, num_windows); win.validate(); if(inputs.empty()) { kernel->run(win, info); } else { kernel->run_op(inputs, outputs, win, info); } }; } run_workloads(workloads); } } } void CPPScheduler::schedule_op(ICPPKernel *kernel, const Hints &hints, const InputTensorMap &inputs, const OutputTensorMap &outputs) { schedule_common(kernel, hints, inputs, outputs); } void CPPScheduler::schedule(ICPPKernel *kernel, const Hints &hints) { const InputTensorMap inputs; OutputTensorMap outputs; schedule_common(kernel, hints, inputs, outputs); } } // namespace arm_compute