/* * Copyright (c) 2016-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CPP/CPPScheduler.h" #include "arm_compute/core/CPP/ICPPKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Log.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/Utility.h" #include "support/Mutex.h" #include #include #include #include #include #include #include #include #include namespace arm_compute { namespace { class ThreadFeeder { public: /** Constructor * * @param[in] start First value that will be returned by the feeder * @param[in] end End condition (The last value returned by get_next() will be end - 1) */ explicit ThreadFeeder(unsigned int start = 0, unsigned int end = 0) : _atomic_counter(start), _end(end) { } /** Return the next element in the range if there is one. * * @param[out] next Will contain the next element if there is one. * * @return False if the end of the range has been reached and next wasn't set. */ bool get_next(unsigned int &next) { next = atomic_fetch_add_explicit(&_atomic_counter, 1u, std::memory_order_relaxed); return next < _end; } private: std::atomic_uint _atomic_counter; const unsigned int _end; }; /** Execute workloads[info.thread_id] first, then call the feeder to get the index of the next workload to run. * * Will run workloads until the feeder reaches the end of its range. * * @param[in] workloads The array of workloads * @param[in,out] feeder The feeder indicating which workload to execute next. * @param[in] info Threading and CPU info. */ void process_workloads(std::vector &workloads, ThreadFeeder &feeder, const ThreadInfo &info) { unsigned int workload_index = info.thread_id; do { ARM_COMPUTE_ERROR_ON(workload_index >= workloads.size()); workloads[workload_index](info); } while (feeder.get_next(workload_index)); } /** Set thread affinity. Pin current thread to a particular core * * @param[in] core_id ID of the core to which the current thread is pinned */ void set_thread_affinity(int core_id) { if (core_id < 0) { return; } #if !defined(_WIN64) && !defined(__APPLE__) && !defined(__OpenBSD__) cpu_set_t set; CPU_ZERO(&set); CPU_SET(core_id, &set); ARM_COMPUTE_EXIT_ON_MSG(sched_setaffinity(0, sizeof(set), &set), "Error setting thread affinity"); #endif /* !defined(__APPLE__) && !defined(__OpenBSD__) */ } /** There are currently 2 scheduling modes supported by CPPScheduler * * Linear: * The default mode where all the scheduling is carried out by the main thread linearly (in a loop). * E.G. If there are 8 threads in total, there will be 1 main thread + 7 threads in the thread pool, and it is main * thread's responsibility to start all the other threads in the thread pool. * * Fanout: * In fanout mode, the scheduling (starting other threads) task is distributed across many threads instead of just * the main thread. * * The scheduler has a fixed parameter: wake_fanout, and the scheduling sequence goes like this: * 1. Main thread wakes the first wake_fanout - 1 number of FanoutThreads from the thread pool * From thread: 0 * To thread (non-inclusive): Wake_fanout - 1 * 2. Each FanoutThread then wakes wake_fanout number of FanoutThreads from the thread pool: * From thread: (i + 1) * wake_fanout - 1 * To thread (non-inclusive): (i + 2) * wake_fanout - 1 * where i is the current thread's thread id * The end is clamped at the size of the thread pool / the number of threads in use - 1 * * E.G. for a total number of 8 threads (1 main thread, 7 FanoutThreads in thread pool) with a fanout of 3 * 1. Main thread wakes FanoutThread 0, 1 * 2. FanoutThread 0 wakes FanoutThread 2, 3, 4 * 3. FanoutThread 1 wakes FanoutThread 5, 6 */ class Thread final { public: /** Start a new thread * * Thread will be pinned to a given core id if value is non-negative * * @param[in] core_pin Core id to pin the thread on. If negative no thread pinning will take place */ explicit Thread(int core_pin = -1); Thread(const Thread &) = delete; Thread &operator=(const Thread &) = delete; Thread(Thread &&) = delete; Thread &operator=(Thread &&) = delete; /** Destructor. Make the thread join. */ ~Thread(); /** Set workloads */ void set_workload(std::vector *workloads, ThreadFeeder &feeder, const ThreadInfo &info); /** Request the worker thread to start executing workloads. * * The thread will start by executing workloads[info.thread_id] and will then call the feeder to * get the index of the following workload to run. * * @note This function will return as soon as the workloads have been sent to the worker thread. * wait() needs to be called to ensure the execution is complete. */ void start(); /** Wait for the current kernel execution to complete. */ std::exception_ptr wait(); /** Function ran by the worker thread. */ void worker_thread(); /** Set the scheduling strategy to be linear */ void set_linear_mode() { _thread_pool = nullptr; _wake_beg = 0; _wake_end = 0; } /** Set the scheduling strategy to be fanout */ void set_fanout_mode(std::list *thread_pool, unsigned int wake_beg, unsigned int wake_end) { _thread_pool = thread_pool; _wake_beg = wake_beg; _wake_end = wake_end; } private: std::thread _thread{}; ThreadInfo _info{}; std::vector *_workloads{nullptr}; ThreadFeeder *_feeder{nullptr}; std::mutex _m{}; std::condition_variable _cv{}; bool _wait_for_work{false}; bool _job_complete{true}; std::exception_ptr _current_exception{nullptr}; int _core_pin{-1}; std::list *_thread_pool{nullptr}; unsigned int _wake_beg{0}; unsigned int _wake_end{0}; }; Thread::Thread(int core_pin) : _core_pin(core_pin) { _thread = std::thread(&Thread::worker_thread, this); } Thread::~Thread() { // Make sure worker thread has ended if (_thread.joinable()) { ThreadFeeder feeder; set_workload(nullptr, feeder, ThreadInfo()); start(); _thread.join(); } } void Thread::set_workload(std::vector *workloads, ThreadFeeder &feeder, const ThreadInfo &info) { _workloads = workloads; _feeder = &feeder; _info = info; } void Thread::start() { { std::lock_guard lock(_m); _wait_for_work = true; _job_complete = false; } _cv.notify_one(); } std::exception_ptr Thread::wait() { { std::unique_lock lock(_m); _cv.wait(lock, [&] { return _job_complete; }); } return _current_exception; } void Thread::worker_thread() { set_thread_affinity(_core_pin); while (true) { std::unique_lock lock(_m); _cv.wait(lock, [&] { return _wait_for_work; }); _wait_for_work = false; _current_exception = nullptr; // Exit if the worker thread has not been fed with workloads if (_workloads == nullptr || _feeder == nullptr) { return; } // Wake up more peer threads from thread pool if this job has been delegated to the current thread if (_thread_pool != nullptr) { auto thread_it = _thread_pool->begin(); std::advance(thread_it, std::min(static_cast(_thread_pool->size()), _wake_beg)); auto wake_end = std::min(_wake_end, static_cast(_info.num_threads - 1)); for (unsigned int t = _wake_beg; t < wake_end; ++t, ++thread_it) { thread_it->start(); } } #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED try { #endif /* ARM_COMPUTE_EXCEPTIONS_ENABLED */ process_workloads(*_workloads, *_feeder, _info); #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch (...) { _current_exception = std::current_exception(); } #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ _workloads = nullptr; _job_complete = true; lock.unlock(); _cv.notify_one(); } } } //namespace struct CPPScheduler::Impl final { constexpr static unsigned int m_default_wake_fanout = 4; enum class Mode { Linear, Fanout }; enum class ModeToggle { None, Linear, Fanout }; explicit Impl(unsigned int thread_hint) : _num_threads(thread_hint), _threads(_num_threads - 1), _mode(Mode::Linear), _wake_fanout(0U) { const auto mode_env_v = utility::tolower(utility::getenv("ARM_COMPUTE_CPP_SCHEDULER_MODE")); if (mode_env_v == "linear") { _forced_mode = ModeToggle::Linear; } else if (mode_env_v == "fanout") { _forced_mode = ModeToggle::Fanout; } else { _forced_mode = ModeToggle::None; } } void set_num_threads(unsigned int num_threads, unsigned int thread_hint) { _num_threads = num_threads == 0 ? thread_hint : num_threads; _threads.resize(_num_threads - 1); auto_switch_mode(_num_threads); } void set_num_threads_with_affinity(unsigned int num_threads, unsigned int thread_hint, BindFunc func) { _num_threads = num_threads == 0 ? thread_hint : num_threads; // Set affinity on main thread set_thread_affinity(func(0, thread_hint)); // Set affinity on worked threads _threads.clear(); for (auto i = 1U; i < _num_threads; ++i) { _threads.emplace_back(func(i, thread_hint)); } auto_switch_mode(_num_threads); } void auto_switch_mode(unsigned int num_threads_to_use) { // If the environment variable is set to any of the modes, it overwrites the mode selected over num_threads_to_use if (_forced_mode == ModeToggle::Fanout || (_forced_mode == ModeToggle::None && num_threads_to_use > 8)) { set_fanout_mode(m_default_wake_fanout, num_threads_to_use); ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE( "Set CPPScheduler to Fanout mode, with wake up fanout : %d and %d threads to use\n", this->wake_fanout(), num_threads_to_use); } else // Equivalent to (_forced_mode == ModeToggle::Linear || (_forced_mode == ModeToggle::None && num_threads_to_use <= 8)) { set_linear_mode(); ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Set CPPScheduler to Linear mode, with %d threads to use\n", num_threads_to_use); } } void set_linear_mode() { for (auto &thread : _threads) { thread.set_linear_mode(); } _mode = Mode::Linear; _wake_fanout = 0U; } void set_fanout_mode(unsigned int wake_fanout, unsigned int num_threads_to_use) { ARM_COMPUTE_ERROR_ON(num_threads_to_use > _threads.size() + 1); const auto actual_wake_fanout = std::max(2U, std::min(wake_fanout, num_threads_to_use - 1)); auto thread_it = _threads.begin(); for (auto i = 1U; i < num_threads_to_use; ++i, ++thread_it) { const auto wake_begin = i * actual_wake_fanout - 1; const auto wake_end = std::min((i + 1) * actual_wake_fanout - 1, num_threads_to_use - 1); thread_it->set_fanout_mode(&_threads, wake_begin, wake_end); } // Reset the remaining threads's wake up schedule while (thread_it != _threads.end()) { thread_it->set_fanout_mode(&_threads, 0U, 0U); ++thread_it; } _mode = Mode::Fanout; _wake_fanout = actual_wake_fanout; } unsigned int num_threads() const { return _num_threads; } unsigned int wake_fanout() const { return _wake_fanout; } Mode mode() const { return _mode; } void run_workloads(std::vector &workloads); unsigned int _num_threads; std::list _threads; arm_compute::Mutex _run_workloads_mutex{}; Mode _mode{Mode::Linear}; ModeToggle _forced_mode{ModeToggle::None}; unsigned int _wake_fanout{0}; }; /* * This singleton has been deprecated and will be removed in future releases */ CPPScheduler &CPPScheduler::get() { static CPPScheduler scheduler; return scheduler; } CPPScheduler::CPPScheduler() : _impl(std::make_unique(num_threads_hint())) { } CPPScheduler::~CPPScheduler() = default; void CPPScheduler::set_num_threads(unsigned int num_threads) { // No changes in the number of threads while current workloads are running arm_compute::lock_guard lock(_impl->_run_workloads_mutex); _impl->set_num_threads(num_threads, num_threads_hint()); } void CPPScheduler::set_num_threads_with_affinity(unsigned int num_threads, BindFunc func) { // No changes in the number of threads while current workloads are running arm_compute::lock_guard lock(_impl->_run_workloads_mutex); _impl->set_num_threads_with_affinity(num_threads, num_threads_hint(), func); } unsigned int CPPScheduler::num_threads() const { return _impl->num_threads(); } #ifndef DOXYGEN_SKIP_THIS void CPPScheduler::run_workloads(std::vector &workloads) { // Mutex to ensure other threads won't interfere with the setup of the current thread's workloads // Other thread's workloads will be scheduled after the current thread's workloads have finished // This is not great because different threads workloads won't run in parallel but at least they // won't interfere each other and deadlock. arm_compute::lock_guard lock(_impl->_run_workloads_mutex); const unsigned int num_threads_to_use = std::min(_impl->num_threads(), static_cast(workloads.size())); if (num_threads_to_use < 1) { return; } // Re-adjust the mode if the actual number of threads to use is different from the number of threads created _impl->auto_switch_mode(num_threads_to_use); int num_threads_to_start = 0; switch (_impl->mode()) { case CPPScheduler::Impl::Mode::Fanout: { num_threads_to_start = static_cast(_impl->wake_fanout()) - 1; break; } case CPPScheduler::Impl::Mode::Linear: default: { num_threads_to_start = static_cast(num_threads_to_use) - 1; break; } } ThreadFeeder feeder(num_threads_to_use, workloads.size()); ThreadInfo info; info.cpu_info = &cpu_info(); info.num_threads = num_threads_to_use; unsigned int t = 0; auto thread_it = _impl->_threads.begin(); // Set num_threads_to_use - 1 workloads to the threads as the remaining 1 is left to the main thread for (; t < num_threads_to_use - 1; ++t, ++thread_it) { info.thread_id = t; thread_it->set_workload(&workloads, feeder, info); } thread_it = _impl->_threads.begin(); for (int i = 0; i < num_threads_to_start; ++i, ++thread_it) { thread_it->start(); } info.thread_id = t; // Set main thread's thread_id std::exception_ptr last_exception = nullptr; #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED try { #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ process_workloads(workloads, feeder, info); // Main thread processes workloads #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch (...) { last_exception = std::current_exception(); } try { #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ thread_it = _impl->_threads.begin(); for (unsigned int i = 0; i < num_threads_to_use - 1; ++i, ++thread_it) { std::exception_ptr current_exception = thread_it->wait(); if (current_exception) { last_exception = current_exception; } } if (last_exception) { std::rethrow_exception(last_exception); } #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED } catch (const std::system_error &e) { std::cerr << "Caught system_error with code " << e.code() << " meaning " << e.what() << '\n'; } #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */ } #endif /* DOXYGEN_SKIP_THIS */ void CPPScheduler::schedule_op(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors) { schedule_common(kernel, hints, window, tensors); } void CPPScheduler::schedule(ICPPKernel *kernel, const Hints &hints) { ITensorPack tensors; schedule_common(kernel, hints, kernel->window(), tensors); } } // namespace arm_compute