/* * Copyright (c) 2018-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/tuners/BifrostTuner.h" #include "arm_compute/core/CL/CLHelpers.h" #include "src/core/CL/CLKernels.h" #include "support/Cast.h" #include "src/core/gpu/cl/kernels/ClPoolingKernel.h" namespace arm_compute { namespace tuners { namespace { /** Tunes a @ref CLDirectConvolutionLayerKernel for a bifrost target * * @param[in] k Kernels to tune */ void tune_direct_convolution_kernel(CLDirectConvolutionLayerKernel &k) { cl::NDRange lws_hint = k.lws_hint(); const GPUTarget gpu_target = k.get_target(); const DataType dt = k._input->info()->data_type(); const TensorShape weights_shape = k._weights->info()->tensor_shape(); const TensorShape inputs_shape = k._input->info()->tensor_shape(); const size_t kernel_size = weights_shape.x(); const unsigned int stride_x = k._conv_stride_x; const unsigned int stride_y = k._conv_stride_y; if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72) && (kernel_size <= 5) && (stride_x == 1) && (stride_y == 1) && (dt == DataType::F32)) { // Through extensive experimentation with over 30 representative tensor // shapes, we found a small number of local work size configurations // that result in nearly optimal execution times. Selecting the right // lws for a given shape, however, required a complex decision tree, // until we constructed a simple feature as described below. // // We started from the number of multiply-accumulate operations for a // convolution layer, which is equal to the product of the input // dimensions 0..2 and the weights dimensions 0..2. Unfortunately, // this resulted in ties between distinct shapes that required distinct // lws configurations. Replacing the width of the input with the kernel // size, however, resulted in nearly optimal predictions. We use underscores // in variable names to indicate when they are intentionally misleading. const size_t product_of_weights_dimensions = weights_shape[0] * weights_shape[1] * weights_shape[2]; const size_t product_of_input_dimensions_ = inputs_shape[0] * inputs_shape[1] * inputs_shape[2]; const float mega_ops_ = 1e-6 * product_of_weights_dimensions * product_of_input_dimensions_; switch(kernel_size) { case 1: { if(mega_ops_ < 1.f) { lws_hint = cl::NDRange(1, 1, 8); } else if(mega_ops_ < 7.f) { lws_hint = cl::NDRange(1, 1, 4); } else { lws_hint = cl::NDRange(1, 1, 2); } break; } case 3: { if(mega_ops_ < 1.f) { lws_hint = cl::NDRange(1, 1, 8); } else if(mega_ops_ < 13.f) { lws_hint = cl::NDRange(2, 1, 4); } else if(mega_ops_ < 50.f) { lws_hint = cl::NDRange(3, 1, 4); } else { lws_hint = cl::NDRange(2, 1, 6); } break; } case 5: { if(mega_ops_ < 2.f || mega_ops_ > 80.f) { lws_hint = cl::NDRange(2, 1, 4); } else { lws_hint = cl::NDRange(2, 1, 8); } break; } default: break; } k.set_lws_hint(lws_hint); } } void tune_col2im_kernel(CLCol2ImKernel &k) { cl::NDRange lws_hint = k.lws_hint(); const GPUTarget gpu_target = k.get_target(); // Configure the local work size for Bifrost with a value obtained // via exhaustive autotuning over 30 representative tensor shapes. if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G76, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::G52, GPUTarget::G52LIT)) { if((k._convolved_dims.width == 7) || (k._convolved_dims.width == 14)) { lws_hint = cl::NDRange(1, 7, 1); } else { lws_hint = cl::NDRange(1, 8, 1); } } k.set_lws_hint(lws_hint); } void tune_im2col_kernel(CLIm2ColKernel &k) { cl::NDRange lws_hint = k.lws_hint(); const GPUTarget gpu_target = k.get_target(); // Local work size optimized for the 11x11 AlexNet convolution on Bifrost. if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G76, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::G52, GPUTarget::G52LIT) && k._kernel_dims.width == 11) { const bool is_square_kernel = (k._kernel_dims.width == k._kernel_dims.height); if(!is_square_kernel && k._kernel_dims.width > 1 && !k._conv_info.has_padding()) { lws_hint = cl::NDRange(1, 1, 1); } } k.set_lws_hint(lws_hint); } void tune_gemm_kernel(CLGEMMMatrixMultiplyKernel &k) { cl::NDRange lws_hint = k.lws_hint(); const GPUTarget gpu_target = k.get_target(); // Configure LWS hint switch(gpu_target) { case GPUTarget::G71: case GPUTarget::G72: case GPUTarget::G51: case GPUTarget::G51BIG: case GPUTarget::G51LIT: case GPUTarget::G52: case GPUTarget::G52LIT: case GPUTarget::G76: if(k._input1->info()->dimension(1) == 24) { // LWS optimized for the 11x11 AlexNet convolution on Bifrost. lws_hint = cl::NDRange(2, 2); } else if(k._output->info()->dimension(1) == 196) { lws_hint = cl::NDRange(1, 7); } else { lws_hint = cl::NDRange(8, 8); } break; default: lws_hint = cl::NullRange; } k.set_lws_hint(lws_hint); } void tune_pooling_kernel(opencl::kernels::ClPoolingKernel &k) { cl::NDRange lws_hint = k.lws_hint(); const GPUTarget gpu_target = k.get_target(); // Configure the local work size (hint) from the first two dimensions of the global work size. // On Bifrost, this works for up to 35x35xC filters, for which the pooling_layer_3_optimized // kernel is launched with gws=(9, 33, C). In any case, the hint will be ignored if it is // invalid (e.g. exceeds the maximum workgroup size that the kernel can be launched with). if(k._pool_info.data_layout == DataLayout::NCHW) { if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G76, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT, GPUTarget::G52, GPUTarget::G52LIT)) { cl::NDRange gws = ICLKernel::gws_from_window(k.window()); lws_hint = cl::NDRange(gws[0], gws[1], 1); } } k.set_lws_hint(lws_hint); } void tune_scale_kernel(CLScaleKernel &k) { cl::NDRange lws_hint = k.lws_hint(); const GPUTarget gpu_target = k.get_target(); const DataType dt = k.input()->info()->data_type(); const InterpolationPolicy interpolation = k.get_interpolation_policy(); // Configure the local work size for Bifrost, interpolation (bilinear) and datatype F32. // The value are obtained via exhaustive autotuning. if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72) && (dt == DataType::F32) && (interpolation == InterpolationPolicy::BILINEAR)) { auto dim_0 = k.output()->info()->dimension(0); if(dim_0 == 480) { lws_hint = cl::NDRange(2, 1); } else if(dim_0 == 3120) { lws_hint = cl::NDRange(2, 8); } else if(dim_0 == 4160) { lws_hint = cl::NDRange(4, 8); } k.set_lws_hint(lws_hint); } } } // namespace void BifrostTuner::tune_kernel_static(ICLKernel &kernel) { if(dynamic_cast(&kernel) != nullptr) { tune_direct_convolution_kernel(*utils::cast::polymorphic_downcast(&kernel)); } else if(dynamic_cast(&kernel) != nullptr) { tune_col2im_kernel(*utils::cast::polymorphic_downcast(&kernel)); } else if(dynamic_cast(&kernel) != nullptr) { tune_im2col_kernel(*utils::cast::polymorphic_downcast(&kernel)); } else if(dynamic_cast(&kernel) != nullptr) { tune_gemm_kernel(*utils::cast::polymorphic_downcast(&kernel)); } else if(dynamic_cast(&kernel) != nullptr) { tune_pooling_kernel(*utils::cast::polymorphic_downcast(&kernel)); } else if(dynamic_cast(&kernel) != nullptr) { tune_scale_kernel(*utils::cast::polymorphic_downcast(&kernel)); } } void BifrostTuner::tune_kernel_dynamic(ICLKernel &kernel) { ARM_COMPUTE_UNUSED(kernel); } void BifrostTuner::tune_kernel_dynamic(ICLKernel &kernel, ITensorPack &tensors) { ARM_COMPUTE_UNUSED(kernel, tensors); } } // namespace tuners } // namespace arm_compute