/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" using namespace arm_compute; CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr memory_manager) : _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _activationlayer_function(), _input0(), _input1(), _batched_mm_output(), _is_first_run(true), _is_activationlayer_enabled(false) { } void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info) { // TODO(COMPMID-1013): This part will be removed // Get indeces for the width and height const size_t idx_width = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); // Kernel size const unsigned int kernel_w = weights->info()->tensor_shape()[idx_width]; const unsigned int kernel_h = weights->info()->tensor_shape()[idx_height]; // Number of tiles along the X and Y direction const unsigned int num_tiles_x = std::ceil((input->info()->tensor_shape().x() - (kernel_w - 1) + conv_info.pad_left() + conv_info.pad_right()) / 2.f); const unsigned int num_tiles_y = std::ceil((input->info()->tensor_shape().y() - (kernel_h - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / 2.f); // Compute output shape const TensorShape output_convolved_shape = misc::shape_calculator::compute_deep_convolution_shape(*input->info(), *weights->info(), conv_info); // Manage intermediate tensors _memory_group.manage(&_input0); _memory_group.manage(&_batched_mm_output); // Do not manage _input1 as it contains the weights // Configure input transform _input_transform.configure(input, &_input0, conv_info, Size2D(kernel_w, kernel_h)); // Configure filter transform _filter_transform.configure(weights, &_input1, Size2D(2U, 2U)); // Configure batched matrix multiply _batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)); // Configure output transform _output_transform.configure(&_batched_mm_output, biases, output, Size2D(kernel_w, kernel_h), Size2D(output_convolved_shape[idx_width], output_convolved_shape[idx_height]), Size2D(num_tiles_x, num_tiles_y)); // Configure activation layer _is_activationlayer_enabled = act_info.enabled(); if(_is_activationlayer_enabled) { _activationlayer_function.configure(output, nullptr, act_info); } // Allocate temporary tensors _input0.allocator()->allocate(); _input1.allocator()->allocate(); _batched_mm_output.allocator()->allocate(); } Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info) { // TODO(COMPMID-1013): This part will be removed // Get indeces for the width and height const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); // Kernel size const unsigned int kernel_w = weights->tensor_shape()[idx_width]; const unsigned int kernel_h = weights->tensor_shape()[idx_height]; // Number of tiles along the X and Y direction const unsigned int num_tiles_x = std::ceil((input->tensor_shape().x() - (kernel_w - 1) + conv_info.pad_left() + conv_info.pad_right()) / 2.f); const unsigned int num_tiles_y = std::ceil((input->tensor_shape().y() - (kernel_h - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / 2.f); // Compute output shape const TensorShape output_convolved_shape = misc::shape_calculator::compute_deep_convolution_shape(*input, *weights, conv_info); // Validate input transform const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, conv_info, Size2D(kernel_w, kernel_h)); const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape); ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, conv_info, Size2D(kernel_w, kernel_h))); // Validate filter transform const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, Size2D(2U, 2U)); const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape); ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, Size2D(2U, 2U))); // Validate batched matrix multiply TensorShape batched_mm_output_shape = input0.tensor_shape(); batched_mm_output_shape[0] = input1.tensor_shape()[0]; const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/))); // Validate output transform ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, Size2D(kernel_w, kernel_h), Size2D(output_convolved_shape[idx_width], output_convolved_shape[idx_height]), Size2D(num_tiles_x, num_tiles_y))); // Validate Activation Layer if(act_info.enabled()) { CLActivationLayer::validate(output, nullptr, act_info); } return Status{}; } void CLWinogradConvolutionLayer::run() { if(_is_first_run) { // Run filter transform CLScheduler::get().enqueue(_filter_transform, false); _is_first_run = false; } _memory_group.acquire(); // Run input transform _input_transform.run(); // Run batched matrix multiplication _batched_mm.run(); // Run output transform CLScheduler::get().enqueue(_output_transform); if(_is_activationlayer_enabled) { _activationlayer_function.run(); } _memory_group.release(); }