/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" using namespace arm_compute; namespace { Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataLayout data_layout) { Size2D output_tile = Size2D{}; const unsigned int kernel_max_dim = std::max(kernel_dims.width, kernel_dims.height); // Check if the input spatial dimensions are smaller than 4 const bool is_input_lt4_nchw = (input_dims.width <= 4 && input_dims.height <= 4) && (data_layout == DataLayout::NCHW); if(kernel_max_dim == 3U) { if(kernel_dims == Size2D(3U, 3U)) { output_tile = is_input_lt4_nchw ? Size2D(2U, 2U) : Size2D(4U, 4U); } else if(kernel_dims == Size2D(3U, 1U)) { output_tile = is_input_lt4_nchw ? Size2D(2U, 1U) : Size2D(4U, 1U); } else { output_tile = is_input_lt4_nchw ? Size2D(1U, 2U) : Size2D(1U, 4U); } } else if(kernel_max_dim == 5U) { output_tile = Size2D(kernel_dims.width == 1 ? 1U : 4U, kernel_dims.height == 1 ? 1U : 4U); } else if(kernel_max_dim == 7U) { output_tile = Size2D(kernel_dims.width == 1 ? 1U : 2U, kernel_dims.height == 1 ? 1U : 2U); } return output_tile; } bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size) { // Check if we want to configure a Winograd configuration which requires fast math using WinogradConfiguration = std::pair, std::pair>; std::vector fast_math_winograd = { WinogradConfiguration(std::pair(4, 4), std::pair(5, 5)), WinogradConfiguration(std::pair(2, 2), std::pair(7, 7)) }; auto p = std::make_pair(std::pair(output_tile.width, output_tile.height), std::pair(kernel_size.width, kernel_size.height)); return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end(); } } // namespace CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr memory_manager) : _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _input0(), _input1(), _batched_mm_output(), _original_weights(nullptr), _is_prepared(false) { } void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { // Get indices for the width and height const size_t idx_width = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); // Input shape, kernel size and output tile const Size2D input_dims = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]); const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, input->info()->data_layout()); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); //disable winograd for fp16 if fast math is false. ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true"); } const WinogradInfo winograd_info = WinogradInfo(output_tile, kernel_size, input_dims, conv_info, input->info()->data_layout()); _is_prepared = false; _original_weights = weights; // Manage intermediate tensors _memory_group.manage(&_input0); _memory_group.manage(&_batched_mm_output); // Do not manage _input1 as it contains the weights // Configure input transform _input_transform.configure(input, &_input0, winograd_info); // Configure filter transform _filter_transform.configure(weights, &_input1, winograd_info); // Configure batched matrix multiply _batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false, GEMMLowpOutputStageInfo(), (input->info()->data_type() == DataType::F16))); // Configure output transform _output_transform.configure(&_batched_mm_output, biases, output, winograd_info, act_info); // Allocate temporary tensors _input0.allocator()->allocate(); _batched_mm_output.allocator()->allocate(); } Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math) { // Get indeces for the width and height const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); // Input shape, kernel size and output tile const Size2D input_dims = Size2D(input->tensor_shape()[idx_width], input->tensor_shape()[idx_height]); const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]); const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, input->data_layout()); // Check if the Winograd configuration requires fast math if(!enable_fast_math) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); //disable winograd for fp16 if fast math is false. ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true"); } const WinogradInfo winograd_info = WinogradInfo(output_tile, kernel_size, input_dims, conv_info, input->data_layout()); // Validate input transform const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info); const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape); ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, winograd_info)); // Validate filter transform const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info); const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape); ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, winograd_info)); // Validate batched matrix multiply TensorShape batched_mm_output_shape = input0.tensor_shape(); batched_mm_output_shape[0] = input1.tensor_shape()[0]; const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/, 0, false, false, GEMMLowpOutputStageInfo(), (input->data_type() == DataType::F16)))); // Configure output transform ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, winograd_info)); // Validate Activation Layer if(act_info.enabled()) { ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info)); } return Status{}; } void CLWinogradConvolutionLayer::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); // Run input transform _input_transform.run(); // Run batched matrix multiplication _batched_mm.run(); // Run output transform CLScheduler::get().enqueue(_output_transform); } void CLWinogradConvolutionLayer::prepare() { if(!_is_prepared) { // Run filter transform and mark original weights as unused _input1.allocator()->allocate(); CLScheduler::get().enqueue(_filter_transform, false); _original_weights->mark_as_unused(); // Prepare GEMM and release reshaped weights if marked unused by CLGEMM _batched_mm.prepare(); if(!_input1.is_used()) { _input1.allocator()->free(); } CLScheduler::get().queue().finish(); _is_prepared = true; } }