/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLSoftmaxLayer.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/ICLKernel.h" #include "arm_compute/core/CL/kernels/CLSoftmaxLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" namespace arm_compute { template CLSoftmaxLayerGeneric::CLSoftmaxLayerGeneric(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _max_shift_exp_sum_kernel(), _norm_kernel(), _flatten_ptr(), _reshape(), _max(), _sum(), _tmp(), _input_flattened(), _output_flattened(), _needs_flattening(false) { } template void CLSoftmaxLayerGeneric::configure_reshape_input_kernel(const ICLTensor *input, const ICLTensor *output, size_t first_n_reduce_axes) { configure_reshape_input_kernel(CLKernelLibrary::get().get_compile_context(), input, output, first_n_reduce_axes); } template void CLSoftmaxLayerGeneric::configure_reshape_input_kernel(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *output, size_t first_n_reduce_axes) { // Flatten the input const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input->info(), first_n_reduce_axes); // Initialize the flat input _input_flattened.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten)); // If we need to flatten the input, we can use CLFlattenKernel or CLReshapeKernel // If the number of reduced axes is 3 (max dimension), which means collapsing all axes except the batch axis, we use CLFlattenKernel. // In all other cases we have to use CLReshapeKernel // Note that the "other cases" include both: // 1. first_n_reduce_axes < 3: Reduce the first 1 (no need to reduce) or 2 dimensions (inclusive) // 2. first_n_reduce_axes == 4: Reduce all 4 dimensions. This can only be handled by CLReshapeKernel instead of CLFlattenKernel. if(first_n_reduce_axes == 3) { auto flatten = support::cpp14::make_unique(); flatten->configure(compile_context, input, &_input_flattened); _flatten_ptr = std::move(flatten); } else { auto reshape_ptr = support::cpp14::make_unique(); reshape_ptr->configure(compile_context, input, &_input_flattened); _flatten_ptr = std::move(reshape_ptr); } // We need to init the output tensor here. Indeed, the reshape kernel expects // both tensors to be already initialized auto_init_if_empty(*output->info(), *input->info()->clone()); } template void CLSoftmaxLayerGeneric::configure(const ICLTensor *input, ICLTensor *output, float beta, size_t reduce_end_axis) { configure(CLKernelLibrary::get().get_compile_context(), input, output, beta, reduce_end_axis); } template void CLSoftmaxLayerGeneric::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, float beta, size_t reduce_end_axis) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(CLSoftmaxLayerGeneric::validate(input->info(), output->info(), beta, reduce_end_axis)); // Convert reduce-before axis (inclusive) to first n axes to reduce size_t first_n_reduce_axes = dim_index_2_num_dims(reduce_end_axis, input->info()->num_dimensions()); // We only need flattening when the number of axes to reduce is greater than 1 _needs_flattening = first_n_reduce_axes > 1; // If we are dealing with a 4D tensor, we will: // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor // - Execute all the pipeline (reduction + normalization) on the flattened tensor // - Reshape the flattened output into the real output if(_needs_flattening) { // Add to the memory manager _input_flattened _memory_group.manage(&_input_flattened); // Cofigure _flatten_kernel and _input_flattened configure_reshape_input_kernel(input, output, first_n_reduce_axes); } // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case) // or it is the original input case (2D case) const ICLTensor *input_2D = (_needs_flattening ? &_input_flattened : input); // Create intermediate tensors shapes TensorInfo input_info = input_2D->info()->clone()->reset_padding().set_is_resizable(true); DataType tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::S32 : input_2D->info()->data_type(); TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type)); _tmp.allocator()->init(tensor_info_tmp); TensorShape max_sum_shape = input_2D->info()->tensor_shape(); max_sum_shape.set(0, 1); _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape)); _sum.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type)); // Set GPU target to kernels _max_shift_exp_sum_kernel.set_target(CLScheduler::get().target()); // Manage intermediate buffers _memory_group.manage(&_tmp); _memory_group.manage(&_max); _memory_group.manage(&_sum); SoftmaxKernelInfo softmax_info; softmax_info.beta = beta; softmax_info.is_log = IS_LOG; softmax_info.input_data_type = input_2D->info()->data_type(); // Configure kernels _max_shift_exp_sum_kernel.configure(compile_context, input_2D, &_max, &_tmp, &_sum, softmax_info); if(_needs_flattening) { // Add to the memory manager _output_flattened _memory_group.manage(&_output_flattened); // The normalization kernel stores the result in a flat output tensor _norm_kernel.configure(compile_context, &_tmp, &_sum, &_output_flattened, softmax_info); // Reshape the flat output into a the requested (4D) output _reshape.configure(compile_context, &_output_flattened, output); // Allocate the intermediate flat tensors _input_flattened.allocator()->allocate(); _output_flattened.allocator()->allocate(); } else { // Softmax 2D case _norm_kernel.configure(compile_context, &_tmp, &_sum, output, softmax_info); } // Allocate intermediate buffers _tmp.allocator()->allocate(); _max.allocator()->allocate(); _sum.allocator()->allocate(); } template Status CLSoftmaxLayerGeneric::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, size_t reduce_end_axis) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported"); ARM_COMPUTE_UNUSED(beta); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() <= reduce_end_axis); // Convert reduce-before axis (inclusive) to first n axes to reduce size_t first_n_reduce_axes = dim_index_2_num_dims(reduce_end_axis, input->num_dimensions()); // Create intermediate tensor info DataType tmp_data_type = is_data_type_quantized_asymmetric(input->data_type()) ? DataType::S32 : input->data_type(); TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true)); TensorShape max_sum_shape = input->tensor_shape(); max_sum_shape.set(0, 1); TensorInfo tensor_info_max(input->clone()->set_tensor_shape(max_sum_shape).set_is_resizable(true)); TensorInfo tensor_info_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(QuantizationInfo()).set_is_resizable(true)); const bool needs_flattening = (first_n_reduce_axes > 1); if(needs_flattening) { const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input, first_n_reduce_axes); TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true)); if(first_n_reduce_axes == 3) { ARM_COMPUTE_RETURN_ON_ERROR(CLFlattenLayer::validate(input, &tensor_info_flat)); } else { ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(input, &tensor_info_flat)); } } SoftmaxKernelInfo softmax_info; softmax_info.beta = beta; softmax_info.is_log = IS_LOG; softmax_info.input_data_type = input->data_type(); ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DMaxShiftExpSumKernel::validate(input, &tensor_info_max, &tensor_info_tmp, &tensor_info_sum)); ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DNormKernel::validate(&tensor_info_tmp, &tensor_info_sum, output, softmax_info)); if(needs_flattening) { const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input); TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true)); } return Status{}; } template void CLSoftmaxLayerGeneric::run() { MemoryGroupResourceScope scope_mg(_memory_group); if(_needs_flattening) { _flatten_ptr->run(); } CLScheduler::get().enqueue(_max_shift_exp_sum_kernel, false); CLScheduler::get().enqueue(_norm_kernel, !_needs_flattening); if(_needs_flattening) { _reshape.run(); } } template class CLSoftmaxLayerGeneric; template class CLSoftmaxLayerGeneric; } // namespace arm_compute