/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLReductionOperation.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/Utils.h" #include "support/MemorySupport.h" namespace arm_compute { CLReductionOperation::CLReductionOperation(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _results_vector(), _reduction_kernels_vector(), _border_handlers_vector(), _reshape(), _num_of_stages(), _reduction_axis(), _is_serial(), _is_reshape_required(false) { } Status CLReductionOperation::validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int axis, ReductionOperation op, bool keep_dims) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= TensorShape::num_max_dimensions, "Reduction axis greater than max number of dimensions"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis"); const unsigned int num_of_stages = calculate_number_of_stages_only_x_axis(input->dimension(0), axis); const bool is_serial = needs_serialized_reduction(op, input->data_type(), axis); const bool is_reshape_required = !keep_dims; if(is_reshape_required && output->total_size() != 0) { const TensorInfo expected_output_shape = output->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_reduced_shape(input->tensor_shape(), axis, keep_dims)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output_shape, output); } auto *output_internal = output; TensorInfo output_before_reshape; const auto input_shape = input->tensor_shape(); const auto input_data_type = input->data_type(); const auto input_num_channles = input->num_channels(); const auto input_qinfo = input->quantization_info(); const auto output_data_type = output->data_type(); auto initialize_tensorinfo = [](TensorInfo & ti, TensorShape shape, DataType data_type, int num_channels, QuantizationInfo qinfo) { ti.set_data_type(data_type).set_tensor_shape(shape).set_num_channels(num_channels).set_quantization_info(qinfo); }; if(is_reshape_required) { auto shape_before_reshape = input_shape; shape_before_reshape.set(axis, 1); initialize_tensorinfo(output_before_reshape, shape_before_reshape, output_data_type, input_num_channles, input_qinfo); output_internal = &output_before_reshape; } if(is_serial) { ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(input, output_internal, axis, op)); } else { // Create temporary tensor infos std::vector sums_vector(num_of_stages - 1); // Create intermediate tensor info TensorShape shape{ input_shape }; shape.set(0, ceil(shape.x() / 128.f)); for(unsigned int i = 0; i < num_of_stages - 1; i++) { initialize_tensorinfo(sums_vector[i], shape, input_data_type, input_num_channles, input_qinfo); } ReductionOperation first_kernel_op; ReductionOperation intermediate_kernel_op; ReductionOperation last_kernel_op; switch(op) { case ReductionOperation::SUM: case ReductionOperation::MEAN_SUM: first_kernel_op = ReductionOperation::SUM; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = op; break; case ReductionOperation::SUM_SQUARE: first_kernel_op = ReductionOperation::SUM_SQUARE; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = ReductionOperation::SUM; break; case ReductionOperation::PROD: first_kernel_op = ReductionOperation::PROD; intermediate_kernel_op = ReductionOperation::PROD; last_kernel_op = ReductionOperation::PROD; break; case ReductionOperation::MIN: first_kernel_op = ReductionOperation::MIN; intermediate_kernel_op = ReductionOperation::MIN; last_kernel_op = ReductionOperation::MIN; break; case ReductionOperation::MAX: first_kernel_op = ReductionOperation::MAX; intermediate_kernel_op = ReductionOperation::MAX; last_kernel_op = ReductionOperation::MAX; break; default: ARM_COMPUTE_ERROR("Not supported"); } // Validate ReductionOperation only on first kernel ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(input, &sums_vector[0], axis, first_kernel_op)); // Validate ReductionOperation on intermediate stages for(unsigned int i = 1; i < num_of_stages - 1; ++i) { ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(&sums_vector[i - 1], &sums_vector[i], axis, intermediate_kernel_op)); } // Validate ReductionOperation on the last stage const unsigned int last_stage = num_of_stages - 1; ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(&sums_vector[last_stage - 1], output_internal, axis, last_kernel_op, input->dimension(0))); } if(is_reshape_required) { ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(output_internal, output)); } return Status{}; } ICLTensor *CLReductionOperation::configure_intermediate_result_vector(ICLTensor *input, ICLTensor *output) { if(!_is_reshape_required && _is_serial) { return output; } auto intermediate_result_vector_size = _is_serial ? 1 : _num_of_stages; if(!_is_reshape_required) { --intermediate_result_vector_size; } _results_vector.resize(intermediate_result_vector_size); auto shape = input->info()->tensor_shape(); shape.set(_reduction_axis, _is_serial ? 1 : ceil(shape.x() / 128.f)); for(auto &v : _results_vector) { if(&v == &_results_vector.back() && _is_reshape_required) { shape.set(_reduction_axis, 1); } v.allocator()->init(input->info()->clone()->set_tensor_shape(shape)); } return _is_reshape_required ? &_results_vector.back() : output; } void CLReductionOperation::configure(ICLTensor *input, ICLTensor *output, unsigned int axis, ReductionOperation op, bool keep_dims) { configure(CLKernelLibrary::get().get_compile_context(), input, output, axis, op, keep_dims); } void CLReductionOperation::configure(const CLCompileContext &compile_context, ICLTensor *input, ICLTensor *output, unsigned int axis, ReductionOperation op, bool keep_dims) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); _num_of_stages = calculate_number_of_stages_only_x_axis(input->info()->dimension(0), axis); _reduction_axis = axis; _is_serial = needs_serialized_reduction(op, input->info()->data_type(), axis); _is_reshape_required = !keep_dims; auto *output_internal = configure_intermediate_result_vector(input, output); if(_is_reshape_required) { const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_reduced_shape(input->info()->tensor_shape(), axis, false); const auto output_data_type = input->info()->data_type(); auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true)); } // Configure reduction operation kernels _reduction_kernels_vector.resize(_num_of_stages); // Create temporary tensors if(_is_serial) { if(_is_reshape_required) { _memory_group.manage(&_results_vector.back()); } _reduction_kernels_vector[0].configure(compile_context, input, output_internal, axis, op, 0); } else { _border_handlers_vector.resize(_num_of_stages); _memory_group.manage(&_results_vector[0]); ReductionOperation first_kernel_op; ReductionOperation intermediate_kernel_op; ReductionOperation last_kernel_op; PixelValue pixelValue; switch(op) { case ReductionOperation::SUM: case ReductionOperation::MEAN_SUM: first_kernel_op = ReductionOperation::SUM; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = op; pixelValue = PixelValue(); break; case ReductionOperation::SUM_SQUARE: first_kernel_op = ReductionOperation::SUM_SQUARE; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = ReductionOperation::SUM; pixelValue = PixelValue(); break; case ReductionOperation::PROD: first_kernel_op = ReductionOperation::PROD; intermediate_kernel_op = ReductionOperation::PROD; last_kernel_op = ReductionOperation::PROD; pixelValue = PixelValue(1, input->info()->data_type()); break; case ReductionOperation::MIN: first_kernel_op = ReductionOperation::MIN; intermediate_kernel_op = ReductionOperation::MIN; last_kernel_op = ReductionOperation::MIN; pixelValue = std::get<1>(get_min_max(input->info()->data_type())); break; case ReductionOperation::MAX: first_kernel_op = ReductionOperation::MAX; intermediate_kernel_op = ReductionOperation::MAX; last_kernel_op = ReductionOperation::MAX; pixelValue = std::get<0>(get_min_max(input->info()->data_type())); break; default: ARM_COMPUTE_ERROR("Not supported"); } _reduction_kernels_vector[0].configure(compile_context, input, &_results_vector[0], axis, first_kernel_op); _border_handlers_vector[0].configure(compile_context, input, _reduction_kernels_vector[0].border_size(), BorderMode::CONSTANT, pixelValue); // Apply ReductionOperation on intermediate stages for(unsigned int i = 1; i < _num_of_stages - 1; ++i) { _memory_group.manage(&_results_vector[i]); _reduction_kernels_vector[i].configure(compile_context, &_results_vector[i - 1], &_results_vector[i], axis, intermediate_kernel_op); _border_handlers_vector[i].configure(compile_context, &_results_vector[i - 1], _reduction_kernels_vector[i].border_size(), BorderMode::CONSTANT, pixelValue); _results_vector[i - 1].allocator()->allocate(); } // Apply ReductionOperation on the last stage const unsigned int last_stage = _num_of_stages - 1; const unsigned int input_width = input->info()->dimension(0); if(_is_reshape_required) { _memory_group.manage(&_results_vector.back()); } _reduction_kernels_vector[last_stage].configure(compile_context, &_results_vector[last_stage - 1], output_internal, axis, last_kernel_op, input_width); _border_handlers_vector[last_stage].configure(compile_context, &_results_vector[last_stage - 1], _reduction_kernels_vector[last_stage].border_size(), BorderMode::CONSTANT, pixelValue); _results_vector[last_stage - 1].allocator()->allocate(); } if(_is_reshape_required) { _reshape.configure(compile_context, &_results_vector.back(), output); _results_vector.back().allocator()->allocate(); } } void CLReductionOperation::run() { MemoryGroupResourceScope scope_mg(_memory_group); if(_is_serial) { CLScheduler::get().enqueue(_reduction_kernels_vector[0], false); } else { for(unsigned int i = 0; i < _num_of_stages; ++i) { CLScheduler::get().enqueue(_border_handlers_vector[i], false); CLScheduler::get().enqueue(_reduction_kernels_vector[i], false); } } if(_is_reshape_required) { _reshape.run(); } } } // namespace arm_compute