/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLReductionOperation.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/kernels/CLReductionOperationKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/Tensor.h" #include "support/ToolchainSupport.h" using namespace arm_compute; namespace { unsigned int calculate_number_of_stages(const ITensorInfo *input, unsigned int axis) { // We need only 1 stage for all axis except x-axis and x-axis for QASYMM8. if(axis != 0 || (axis == 0 && is_data_type_quantized(input->data_type()))) { return 1; } // Calculate number of WGs. 16 elements per thread, 8 threads per WG const unsigned int num_of_wg = ceil(input->dimension(0) / 128.f); // Calculate number of stages. First stage performs op and the rest reduction sum // depending on the size of the input. Last stage should have only 1 WG. const unsigned int num_of_stages = num_of_wg / 128 + 2; return num_of_stages; } } // namespace CLReductionOperation::CLReductionOperation(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _results_vector(), _reduction_kernels_vector(), _border_handlers_vector(), _num_of_stages(), _reduction_axis(), _is_serial() { } Status CLReductionOperation::validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int axis, ReductionOperation op) { const unsigned int num_of_stages = calculate_number_of_stages(input, axis); bool is_serial = is_data_type_quantized(input->data_type()) || axis != 0; if(is_serial) { ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(input, output, axis, op)); } else { // Create temporary tensor infos std::vector sums_vector(num_of_stages - 1); // Create intermediate tensor info TensorShape shape{ input->tensor_shape() }; for(unsigned int i = 0; i < num_of_stages - 1; i++) { shape.set(0, ceil(shape.x() / 128.f)); sums_vector[i].set_data_type(input->data_type()); sums_vector[i].set_tensor_shape(shape); sums_vector[i].set_num_channels(input->num_channels()); } ReductionOperation first_kernel_op; ReductionOperation intermediate_kernel_op; ReductionOperation last_kernel_op; switch(op) { case ReductionOperation::SUM: case ReductionOperation::MEAN_SUM: first_kernel_op = ReductionOperation::SUM; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = op; break; case ReductionOperation::SUM_SQUARE: first_kernel_op = ReductionOperation::SUM_SQUARE; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = ReductionOperation::SUM; break; case ReductionOperation::PROD: first_kernel_op = ReductionOperation::PROD; intermediate_kernel_op = ReductionOperation::PROD; last_kernel_op = ReductionOperation::PROD; break; default: ARM_COMPUTE_ERROR("Not supported"); } // Validate ReductionOperation only on first kernel ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(input, &sums_vector[0], axis, first_kernel_op)); // Validate ReductionOperation on intermediate stages for(unsigned int i = 1; i < num_of_stages - 1; ++i) { ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(&sums_vector[i - 1], &sums_vector[i], axis, intermediate_kernel_op)); } // Validate ReductionOperation on the last stage const unsigned int last_stage = num_of_stages - 1; ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(&sums_vector[last_stage - 1], output, axis, last_kernel_op, input->dimension(0))); } return Status{}; } void CLReductionOperation::configure(ICLTensor *input, ICLTensor *output, unsigned int axis, ReductionOperation op) { _num_of_stages = calculate_number_of_stages(input->info(), axis); _reduction_axis = axis; _is_serial = is_data_type_quantized(input->info()->data_type()) || axis != 0; // Configure reduction operation kernels _reduction_kernels_vector.resize(_num_of_stages); // Create temporary tensors if(_is_serial) { _reduction_kernels_vector[0].configure(input, output, axis, op, 0); } else { _border_handlers_vector.resize(_num_of_stages); _results_vector.resize(_num_of_stages - 1); TensorShape shape{ input->info()->tensor_shape() }; for(unsigned int i = 0; i < _num_of_stages - 1; i++) { shape.set(0, ceil(shape.x() / 128.f)); _results_vector[i].allocator()->init(input->info()->clone()->set_tensor_shape(shape)); } // Apply ReductionOperation only on first kernel _memory_group.manage(&_results_vector[0]); ReductionOperation first_kernel_op; ReductionOperation intermediate_kernel_op; ReductionOperation last_kernel_op; PixelValue pixelValue; switch(op) { case ReductionOperation::SUM: case ReductionOperation::MEAN_SUM: first_kernel_op = ReductionOperation::SUM; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = op; pixelValue = PixelValue(); break; case ReductionOperation::SUM_SQUARE: first_kernel_op = ReductionOperation::SUM_SQUARE; intermediate_kernel_op = ReductionOperation::SUM; last_kernel_op = ReductionOperation::SUM; pixelValue = PixelValue(); break; case ReductionOperation::PROD: first_kernel_op = ReductionOperation::PROD; intermediate_kernel_op = ReductionOperation::PROD; last_kernel_op = ReductionOperation::PROD; pixelValue = PixelValue(1, input->info()->data_type()); break; default: ARM_COMPUTE_ERROR("Not supported"); } _reduction_kernels_vector[0].configure(input, &_results_vector[0], axis, first_kernel_op); _border_handlers_vector[0].configure(input, _reduction_kernels_vector[0].border_size(), BorderMode::CONSTANT, pixelValue); // Apply ReductionOperation on intermediate stages for(unsigned int i = 1; i < _num_of_stages - 1; ++i) { _memory_group.manage(&_results_vector[i]); _reduction_kernels_vector[i].configure(&_results_vector[i - 1], &_results_vector[i], axis, intermediate_kernel_op); _border_handlers_vector[i].configure(&_results_vector[i - 1], _reduction_kernels_vector[i].border_size(), BorderMode::CONSTANT, pixelValue); _results_vector[i - 1].allocator()->allocate(); } // Apply ReductionOperation on the last stage const unsigned int last_stage = _num_of_stages - 1; const unsigned int input_width = input->info()->dimension(0); _reduction_kernels_vector[last_stage].configure(&_results_vector[last_stage - 1], output, axis, last_kernel_op, input_width); _border_handlers_vector[last_stage].configure(&_results_vector[last_stage - 1], _reduction_kernels_vector[last_stage].border_size(), BorderMode::CONSTANT, pixelValue); _results_vector[last_stage - 1].allocator()->allocate(); } } void CLReductionOperation::run() { MemoryGroupResourceScope scope_mg(_memory_group); if(_is_serial) { CLScheduler::get().enqueue(_reduction_kernels_vector[0], false); } else { for(unsigned int i = 0; i < _num_of_stages; ++i) { CLScheduler::get().enqueue(_border_handlers_vector[i], false); CLScheduler::get().enqueue(_reduction_kernels_vector[i], false); } } }