/* * Copyright (c) 2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLQLSTMLayer.h" #include "arm_compute/core/KernelDescriptors.h" #include "arm_compute/core/QuantizationInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/InfoHelpers.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" namespace arm_compute { using namespace arm_compute::utils::info_helpers; namespace { Status validate_mm(GEMMLowpOutputStageInfo &gemmlowp_info, const ITensorInfo *mm_input, const ITensorInfo *mm_weights, const ITensorInfo *bias, float gemmlowp_scale, const TensorInfo *mm_res_info, const TensorInfo *outstage_tensor_info) { ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(mm_input, mm_weights, nullptr, mm_res_info)); ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift)); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(mm_res_info, bias, outstage_tensor_info, gemmlowp_info)); return Status{}; } } // namespace Status CLQLSTMLayer::TensorCopyKernel::validate(const ITensorInfo &src, const ITensorInfo &dst) { ARM_COMPUTE_RETURN_ERROR_ON(src.tensor_shape().num_dimensions() > max_dimension_supported); ARM_COMPUTE_RETURN_ERROR_ON(dst.tensor_shape().num_dimensions() > max_dimension_supported); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst); ARM_COMPUTE_RETURN_ERROR_ON(dst.tensor_shape().y() != src.tensor_shape().y()); return Status{}; } void CLQLSTMLayer::TensorCopyKernel::configure(ICLTensor &src, ICLTensor &dst) { ARM_COMPUTE_ERROR_THROW_ON(CLQLSTMLayer::TensorCopyKernel::validate(*src.info(), *dst.info())); _src = &src; _dst = &dst; _row_size = std::min(_src->info()->tensor_shape().x(), _dst->info()->tensor_shape().x()); _window = calculate_max_window(*_src->info(), Steps()); } void CLQLSTMLayer::TensorCopyKernel::run() { auto &q = CLScheduler::get().queue(); _src->map(q, true); _dst->map(q, true); Iterator input_iter{ _src, _window }; Iterator output_iter{ _dst, _window }; execute_window_loop(_window, [&](const Coordinates &) { memcpy(output_iter.ptr(), input_iter.ptr(), _row_size); }, input_iter, output_iter); _src->unmap(q); _dst->unmap(q); } CLQLSTMLayer::CLQLSTMLayer(std::shared_ptr memory_manager) { _memory_group = MemoryGroup(std::move(memory_manager)); } void CLQLSTMLayer::configure_mm(const CLCompileContext &compile_context, CLGEMMLowpMatrixMultiplyCore &mm, CLGEMMLowpOutputStage &outstage, GEMMLowpOutputStageInfo &gemmlowp_info, const ICLTensor *mm_input, const ICLTensor *mm_weights, const ICLTensor *bias, CLTensor *mm_res, CLTensor *outstage_res, float gemmlowp_scale, const TensorInfo &mm_res_info, const TensorInfo &outstage_tensor_info) { _memory_group.manage(mm_res); _memory_group.manage(outstage_res); mm_res->allocator()->init(mm_res_info); outstage_res->allocator()->init(outstage_tensor_info); // Configure matrix-multiplication mm.configure(compile_context, mm_input, mm_weights, nullptr, mm_res); // Configure output stage quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift); outstage.configure(compile_context, mm_res, bias, outstage_res, gemmlowp_info); mm_res->allocator()->allocate(); } void CLQLSTMLayer::configure(const ICLTensor *input, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias, const ICLTensor *cell_state_in, const ICLTensor *output_state_in, ICLTensor *cell_state_out, ICLTensor *output_state_out, ICLTensor *output, const LSTMParams &lstm_params) { configure(CLKernelLibrary::get().get_compile_context(), input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out, output, lstm_params); } void CLQLSTMLayer::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias, const ICLTensor *cell_state_in, const ICLTensor *output_state_in, ICLTensor *cell_state_out, ICLTensor *output_state_out, ICLTensor *output, const LSTMParams &lstm_params) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out, output); // Set lstm parameters LSTMParams lstm_params_info{}; build_lstm_params_tensor_info(lstm_params, &lstm_params_info); // Validate ARM_COMPUTE_ERROR_THROW_ON(CLQLSTMLayer::validate(input->info(), input_to_forget_weights->info(), input_to_cell_weights->info(), input_to_output_weights->info(), recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(), forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(), cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info(), output->info(), lstm_params_info)); const int batch_size = input->info()->dimension(1); const int num_units = input_to_output_weights->info()->dimension(1); const int output_size = output_state_out->info()->dimension(_out_state_output_size_dimension_idx); const UniformQuantizationInfo qinput = input->info()->quantization_info().uniform(); const UniformQuantizationInfo qcell_state_in = cell_state_in->info()->quantization_info().uniform(); const UniformQuantizationInfo qoutput_state_in = output_state_in->info()->quantization_info().uniform(); _projection_bias = lstm_params.projection_bias(); _input_to_forget_weights = input_to_forget_weights; _input_to_cell_weights = input_to_cell_weights; _input_to_output_weights = input_to_output_weights; _recurrent_to_forget_weights = recurrent_to_forget_weights; _recurrent_to_cell_weights = recurrent_to_cell_weights; _recurrent_to_output_weights = recurrent_to_output_weights; _projection_weights = lstm_params.projection_weights(); // Layer normalization _has_layer_norm = lstm_params.use_layer_norm(); if(_has_layer_norm) { set_layer_norm_weight(lstm_params.forget_layer_norm_weights(), LayerNormGate::Forget); set_layer_norm_weight(lstm_params.cell_layer_norm_weights(), LayerNormGate::Cell); set_layer_norm_weight(lstm_params.input_layer_norm_weights(), LayerNormGate::Input); set_layer_norm_weight(lstm_params.output_layer_norm_weights(), LayerNormGate::Output); set_layer_norm_bias(forget_gate_bias, LayerNormGate::Forget); set_layer_norm_bias(cell_bias, LayerNormGate::Cell); set_layer_norm_bias(lstm_params.input_gate_bias(), LayerNormGate::Input); set_layer_norm_bias(output_gate_bias, LayerNormGate::Output); } _has_cifg = lstm_params.has_cifg_opt(); _has_projection = lstm_params.has_projection(); _has_peephole = lstm_params.has_peephole_opt(); // Calculate and decompose effective scales for optimizing matmul calculation const int32_t cell_shift = log2(qcell_state_in.scale); // Calculate quantized parameters for clipping. int16_t quantized_cell_clip = 0; if(lstm_params.cell_clip() > 0.0f) { quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in); } _has_cell_clipping = quantized_cell_clip > 0; // Precompute effective bias for optimizing the matmul computations. if(!_has_cifg) { _input_to_input_weights = lstm_params.input_to_input_weights(); _recurrent_to_input_weights = lstm_params.recurrent_to_input_weights(); _input_to_input_reduction.configure(compile_context, _input_to_input_weights, &_input_to_input_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)); _recurrent_to_input_reduction.configure(compile_context, _recurrent_to_input_weights, &_recurrent_to_input_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)); } _input_to_forget_reduction.configure(compile_context, input_to_forget_weights, &_input_to_forget_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)); _recurrent_to_forget_reduction.configure(compile_context, recurrent_to_forget_weights, &_recurrent_to_forget_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)); _input_to_cell_reduction.configure(compile_context, input_to_cell_weights, &_input_to_cell_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)); _recurrent_to_cell_reduction.configure(compile_context, recurrent_to_cell_weights, &_recurrent_to_cell_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)); _input_to_output_reduction.configure(compile_context, input_to_output_weights, &_input_to_output_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)); _recurrent_to_output_reduction.configure(compile_context, recurrent_to_output_weights, &_recurrent_to_output_eff_bias, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)); if(_has_projection) { _projection_reduction.configure(compile_context, _projection_weights, &_projection_eff_bias, GEMMLowpReductionKernelInfo(output_size, false, lstm_params.hidden_state_zero(), true)); if(_projection_bias != nullptr) { _projection_bias_add.configure(compile_context, _projection_bias, &_projection_eff_bias, &_projection_eff_bias, ConvertPolicy::SATURATE); } } // Pre-transpose weights to be used in GEMM. _transpose_input_to_forget_weights.configure(compile_context, input_to_forget_weights, &_input_to_forget_weights_transposed); _transpose_input_to_cell_weights.configure(compile_context, input_to_cell_weights, &_input_to_cell_weights_transposed); _transpose_input_to_output_weights.configure(compile_context, input_to_output_weights, &_input_to_output_weights_transposed); _transpose_recurrent_to_forget_weights.configure(compile_context, recurrent_to_forget_weights, &_recurrent_to_forget_weights_transposed); _transpose_recurrent_to_cell_weights.configure(compile_context, recurrent_to_cell_weights, &_recurrent_to_cell_weights_transposed); _transpose_recurrent_to_output_weights.configure(compile_context, recurrent_to_output_weights, &_recurrent_to_output_weights_transposed); if(!_has_cifg) { _transpose_input_to_input_weights.configure(compile_context, lstm_params.input_to_input_weights(), &_input_to_input_weights_transposed); _transpose_recurrent_to_input_weights.configure(compile_context, lstm_params.recurrent_to_input_weights(), &_recurrent_to_input_weights_transposed); } if(_has_projection) { _transpose_projection_weights.configure(compile_context, _projection_weights, &_projection_weights_transposed); } GEMMLowpOutputStageInfo gemmlowp_info; gemmlowp_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; gemmlowp_info.gemmlowp_min_bound = std::numeric_limits::lowest(); gemmlowp_info.gemmlowp_max_bound = std::numeric_limits::max(); gemmlowp_info.output_data_type = DataType::QSYMM16; const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32); // Forget gate. const TensorInfo forget_gate_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0)); const float input_to_forget_scale = input_to_forget_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.forget_intermediate_scale(); configure_mm(compile_context, _mm_input_to_forget, _input_to_forget_outstage, gemmlowp_info, input, &_input_to_forget_weights_transposed, &_input_to_forget_eff_bias, &_mm_input_to_forget_res, &_input_to_forget_outstage_res, input_to_forget_scale, mm_out_info, forget_gate_outstage_info); const float recurrent_to_forget_scale = recurrent_to_forget_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.forget_intermediate_scale(); configure_mm(compile_context, _mm_recurrent_to_forget, _recurrent_to_forget_outstage, gemmlowp_info, output_state_in, &_recurrent_to_forget_weights_transposed, &_recurrent_to_forget_eff_bias, &_mm_recurrent_to_forget_res, &_recurrent_to_forget_outstage_res, recurrent_to_forget_scale, mm_out_info, forget_gate_outstage_info); _accumulate_input_recurrent_forget.configure(compile_context, &_input_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, ConvertPolicy::SATURATE); _input_to_forget_outstage_res.allocator()->allocate(); if(_has_peephole) { _mul_cell_to_forget_res.allocator()->init(TensorInfo(cell_state_in->info()->tensor_shape(), 1, DataType::S32)); _memory_group.manage(&_mul_cell_to_forget_res); _pixelwise_mul_cell_to_forget.configure(compile_context, cell_state_in, lstm_params.cell_to_forget_weights(), &_mul_cell_to_forget_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO); _cell_to_forget_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_forget_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0))); _memory_group.manage(&_cell_to_forget_outstage_res); const float cell_to_forget_scale = std::pow(2, cell_shift) * lstm_params.cell_to_forget_weights()->info()->quantization_info().uniform().scale / lstm_params.forget_intermediate_scale(); quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift); _cell_to_forget_outstage.configure(compile_context, &_mul_cell_to_forget_res, nullptr, &_cell_to_forget_outstage_res, gemmlowp_info); _mul_cell_to_forget_res.allocator()->allocate(); _accumulate_cell_forget.configure(compile_context, &_recurrent_to_forget_outstage_res, &_cell_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, ConvertPolicy::SATURATE); _cell_to_forget_outstage_res.allocator()->allocate(); } CLTensor *forget_activation_input = &_recurrent_to_forget_outstage_res; if(_has_layer_norm) { configure_layer_norm(LayerNormGate::Forget, &_recurrent_to_forget_outstage_res); _recurrent_to_forget_outstage_res.allocator()->allocate(); forget_activation_input = &get_layer_norm_output(LayerNormGate::Forget); } // Output quantization info of Sigmoid and Tanh activations const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0); const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); _memory_group.manage(&_forget_gate); _forget_gate.allocator()->init(forget_gate_info); _forget_gate_sigmoid.configure(compile_context, forget_activation_input, &_forget_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)); forget_activation_input->allocator()->allocate(); // Modulation gate. const TensorInfo cell_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.cell_intermediate_scale(), 0)); const float input_to_cell_scale = input_to_cell_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.cell_intermediate_scale(); configure_mm(compile_context, _mm_input_to_cell, _input_to_cell_outstage, gemmlowp_info, input, &_input_to_cell_weights_transposed, &_input_to_cell_eff_bias, &_mm_input_to_cell_res, &_input_to_cell_outstage_res, input_to_cell_scale, mm_out_info, cell_outstage_info); const float recurrent_to_cell_scale = recurrent_to_cell_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.cell_intermediate_scale(); configure_mm(compile_context, _mm_recurrent_to_cell, _recurrent_to_cell_outstage, gemmlowp_info, output_state_in, &_recurrent_to_cell_weights_transposed, &_recurrent_to_cell_eff_bias, &_mm_recurrent_to_cell_res, &_recurrent_to_cell_outstage_res, recurrent_to_cell_scale, mm_out_info, cell_outstage_info); _accumulate_input_recurrent_modulation.configure(compile_context, &_input_to_cell_outstage_res, &_recurrent_to_cell_outstage_res, &_recurrent_to_cell_outstage_res, ConvertPolicy::SATURATE); _input_to_cell_outstage_res.allocator()->allocate(); CLTensor *cell_activation_input = &_recurrent_to_cell_outstage_res; if(_has_layer_norm) { configure_layer_norm(LayerNormGate::Cell, &_recurrent_to_cell_outstage_res); _recurrent_to_cell_outstage_res.allocator()->allocate(); cell_activation_input = &get_layer_norm_output(LayerNormGate::Cell); } const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); _memory_group.manage(&_cell_gate); _cell_gate.allocator()->init(cell_gate_info); _cell_gate_tanh.configure(compile_context, cell_activation_input, &_cell_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)); cell_activation_input->allocator()->allocate(); // Input gate. const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); _input_gate.allocator()->init(input_gate_info); _memory_group.manage(&_input_gate); if(_has_cifg) { _ones.allocator()->init(*_forget_gate.info()); _input_gate_sub.configure(compile_context, &_ones, &_forget_gate, &_input_gate, ConvertPolicy::SATURATE); _ones.allocator()->allocate(); } else { const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0)); const float input_to_input_scale = _input_to_input_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.input_intermediate_scale(); configure_mm(compile_context, _mm_input_to_input, _input_to_input_outstage, gemmlowp_info, input, &_input_to_input_weights_transposed, &_input_to_input_eff_bias, &_mm_input_to_input_res, &_input_to_input_outstage_res, input_to_input_scale, mm_out_info, input_outstage_info); const float recurrent_to_input_scale = _recurrent_to_input_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.input_intermediate_scale(); configure_mm(compile_context, _mm_recurrent_to_input, _recurrent_to_input_outstage, gemmlowp_info, output_state_in, &_recurrent_to_input_weights_transposed, &_recurrent_to_input_eff_bias, &_mm_recurrent_to_input_res, &_recurrent_to_input_outstage_res, recurrent_to_input_scale, mm_out_info, input_outstage_info); _accumulate_input_recurrent_input.configure(compile_context, &_input_to_input_outstage_res, &_recurrent_to_input_outstage_res, &_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE); _input_to_input_outstage_res.allocator()->allocate(); if(_has_peephole) { _mul_cell_to_input_res.allocator()->init(TensorInfo(cell_state_in->info()->tensor_shape(), 1, DataType::S32)); _memory_group.manage(&_mul_cell_to_input_res); _pixelwise_mul_cell_to_input.configure(compile_context, cell_state_in, lstm_params.cell_to_input_weights(), &_mul_cell_to_input_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO); const float cell_to_input_scale = std::pow(2, cell_shift) * lstm_params.cell_to_input_weights()->info()->quantization_info().uniform().scale / lstm_params.input_intermediate_scale(); quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift); _cell_to_input_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_input_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0))); _memory_group.manage(&_cell_to_input_outstage_res); _cell_to_input_outstage.configure(compile_context, &_mul_cell_to_input_res, nullptr, &_cell_to_input_outstage_res, gemmlowp_info); _mul_cell_to_input_res.allocator()->allocate(); _accumulate_cell_input.configure(&_recurrent_to_input_outstage_res, &_cell_to_input_outstage_res, &_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE); _cell_to_input_outstage_res.allocator()->allocate(); } CLTensor *input_activation_input = &_recurrent_to_input_outstage_res; if(_has_layer_norm) { configure_layer_norm(LayerNormGate::Input, &_recurrent_to_input_outstage_res); _recurrent_to_input_outstage_res.allocator()->allocate(); input_activation_input = &get_layer_norm_output(LayerNormGate::Input); } _input_gate_sigmoid.configure(compile_context, input_activation_input, &_input_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)); input_activation_input->allocator()->allocate(); } // Cell. // TODO(COMPMID-3396): Perform multiplication in the quantized domain in CLPixelWiseMultiplicationKernel _pixelwise_mul_forget_cell.configure(compile_context, &_forget_gate, cell_state_in, &_forget_gate, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO); const float cell_gate_scale = _cell_gate.info()->quantization_info().uniform().scale; const float mul_input_cell_scale = cell_gate_scale * std::pow(2, 15 + cell_shift); const TensorInfo mul_input_cell_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(mul_input_cell_scale, 0)); _memory_group.manage(&_mul_input_cell_res); _mul_input_cell_res.allocator()->init(mul_input_cell_info); _pixelwise_mul_input_cell.configure(compile_context, &_input_gate, &_cell_gate, &_mul_input_cell_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO); _cell_gate.allocator()->allocate(); _add_forget_cell.configure(compile_context, &_forget_gate, &_mul_input_cell_res, cell_state_out, ConvertPolicy::SATURATE); _mul_input_cell_res.allocator()->allocate(); _forget_gate.allocator()->allocate(); if(_has_cell_clipping) { _cell_clip.configure(compile_context, cell_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_cell_clip, quantized_cell_clip)); } // Output gate. const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0)); const float input_to_output_scale = input_to_output_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.output_intermediate_scale(); configure_mm(compile_context, _mm_input_to_output, _input_to_output_outstage, gemmlowp_info, input, &_input_to_output_weights_transposed, &_input_to_output_eff_bias, &_mm_input_to_output_res, &_input_to_output_outstage_res, input_to_output_scale, mm_out_info, output_outstage_info); const float recurrent_to_output_scale = recurrent_to_output_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.output_intermediate_scale(); configure_mm(compile_context, _mm_recurrent_to_output, _recurrent_to_output_outstage, gemmlowp_info, output_state_in, &_recurrent_to_output_weights_transposed, &_recurrent_to_output_eff_bias, &_mm_recurrent_to_output_res, &_recurrent_to_output_outstage_res, recurrent_to_output_scale, mm_out_info, output_outstage_info); _accumulate_input_recurrent_output.configure(compile_context, &_recurrent_to_output_outstage_res, &_input_to_output_outstage_res, &_recurrent_to_output_outstage_res, ConvertPolicy::SATURATE); _input_to_output_outstage_res.allocator()->allocate(); if(_has_peephole) { // TODO(COMPMID-3396): Perform multiplication in the quantized domain in CLPixelWiseMultiplicationKernel // Here we are not using the output stage because all operations are done in float _mul_cell_to_output_res.allocator()->init(TensorInfo(cell_state_out->info()->tensor_shape(), 1, DataType::S32)); _memory_group.manage(&_mul_cell_to_output_res); _pixelwise_mul_cell_to_output.configure(compile_context, cell_state_out, lstm_params.cell_to_output_weights(), &_mul_cell_to_output_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO); const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->info()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale(); quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift); _cell_to_output_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_output_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0))); _memory_group.manage(&_cell_to_output_outstage_res); _cell_to_output_outstage.configure(compile_context, &_mul_cell_to_output_res, nullptr, &_cell_to_output_outstage_res, gemmlowp_info); _mul_cell_to_output_res.allocator()->allocate(); _accumulate_cell_to_output.configure(compile_context, &_recurrent_to_output_outstage_res, &_cell_to_output_outstage_res, &_recurrent_to_output_outstage_res, ConvertPolicy::SATURATE); _cell_to_output_outstage_res.allocator()->allocate(); } CLTensor *output_activation_input = &_recurrent_to_output_outstage_res; if(_has_layer_norm) { configure_layer_norm(LayerNormGate::Output, &_recurrent_to_output_outstage_res); _recurrent_to_output_outstage_res.allocator()->allocate(); output_activation_input = &get_layer_norm_output(LayerNormGate::Output); } const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); _memory_group.manage(&_output_gate); _output_gate.allocator()->init(output_gate_info); _output_gate_sigmoid.configure(compile_context, output_activation_input, &_output_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)); output_activation_input->allocator()->allocate(); // Hidden. _hidden_tanh.configure(compile_context, cell_state_out, &_input_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)); // TODO(COMPMID-3396): Perform multiplication in the quantized domain in CLPixelWiseMultiplicationKernel _memory_group.manage(&_hidden_mul_res); const TensorInfo hidden_mul_res(_input_gate.info()->tensor_shape(), 1, DataType::S32); _hidden_mul_res.allocator()->init(hidden_mul_res); _pixelwise_mul_hidden.configure(compile_context, &_output_gate, &_input_gate, &_hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO); _output_gate.allocator()->allocate(); _input_gate.allocator()->allocate(); const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15); quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true); gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero(); gemmlowp_info.output_data_type = output_state_in->info()->data_type(); _projection_tensor_copy_required = (num_units != output_size); ICLTensor *hidden_gate_result = output_state_out; _memory_group.manage(&_hidden_gate); if(_projection_tensor_copy_required) { _hidden_gate.allocator()->init(*output_state_out->info()); _hidden_gate.info()->set_tensor_shape(_hidden_mul_res.info()->tensor_shape()); hidden_gate_result = &_hidden_gate; } _hidden_outstage.configure(compile_context, &_hidden_mul_res, nullptr, hidden_gate_result, gemmlowp_info); _hidden_mul_res.allocator()->allocate(); // Projection. if(_has_projection) { const TensorInfo projection_outstage_info(*output_state_out->info()); const UniformQuantizationInfo qprojection = _projection_weights->info()->quantization_info().uniform(); const float projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale; gemmlowp_info.gemmlowp_offset = qoutput_state_in.offset; gemmlowp_info.gemmlowp_min_bound = std::numeric_limits::lowest(); gemmlowp_info.gemmlowp_max_bound = std::numeric_limits::max(); gemmlowp_info.output_data_type = DataType::QASYMM8_SIGNED; TensorInfo projection_mm_out_info{ mm_out_info }; projection_mm_out_info.set_tensor_shape(TensorShape(output_size, batch_size)); configure_mm(compile_context, _mm_projection, _projection_outstage, gemmlowp_info, hidden_gate_result, &_projection_weights_transposed, &_projection_eff_bias, &_mm_projection_res, &_projection_outstage_res, projection_scale, projection_mm_out_info, projection_outstage_info); ICLTensor *accumulate_destination = output_state_out; if(_projection_tensor_copy_required) { _hidden_gate.allocator()->allocate(); _projection_accumulate_res.allocator()->init(*output_state_out->info()); _projection_accumulate_res.info()->set_tensor_shape(_projection_outstage_res.info()->tensor_shape()); _projection_output_to_accumulate_copy.configure(*output_state_out, _projection_accumulate_res); accumulate_destination = &_projection_accumulate_res; } _accumulate_projection.configure(compile_context, &_projection_outstage_res, accumulate_destination, accumulate_destination, ConvertPolicy::SATURATE); _projection_outstage_res.allocator()->allocate(); if(_projection_tensor_copy_required) { _projection_accumulate_to_output_copy.configure(_projection_accumulate_res, *output_state_out); _projection_accumulate_res.allocator()->allocate(); } int8_t quantized_projection_clip{ 0 }; if(lstm_params.projection_clip() > 0.0f) { quantized_projection_clip = utility::clamp(lstm_params.projection_clip() / qprojection.scale, -128, 127); } if(quantized_projection_clip > 0) { _projection_clip.configure(compile_context, output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_projection_clip, quantized_projection_clip)); _has_projection_clipping = true; } } else { if(_projection_tensor_copy_required) { _hidden_to_output_copy.configure(_hidden_gate, *output_state_out); _hidden_gate.allocator()->allocate(); } } // Copy output_state_out to output _copy_output.configure(compile_context, output_state_out, output); } Status CLQLSTMLayer::validate(const ITensorInfo *input, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias, const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in, const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out, const ITensorInfo *output, const LSTMParams &lstm_params) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() != 2, "Input must have exactly 2 dimensions"); const unsigned int input_size = input->dimension(0); const unsigned int batch_size = input->dimension(1); const unsigned int num_units = input_to_output_weights->dimension(1); const unsigned int output_size = output_state_out->dimension(_out_state_output_size_dimension_idx); ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() != 2); ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->dimension(0) != input_size); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_output_weights, input_to_forget_weights, input_to_cell_weights); ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() != 2); ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->dimension(1) != num_units); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_to_forget_weights, 1, DataType::QSYMM8); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights); ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() != 1); ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->dimension(0) != num_units); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, cell_bias, output_gate_bias); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(forget_gate_bias, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, cell_bias, output_gate_bias); ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->num_dimensions() != 2); ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(0) != num_units); ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(1) != batch_size); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(cell_state_in, 1, DataType::QSYMM16); ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() != 2); ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(0) != output_size); ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(1) != batch_size); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_in); // Check whether peephole weights are all there or none if(lstm_params.has_peephole_opt()) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights()); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1, DataType::QSYMM16); ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() != 1); ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->dimension(0) != num_units); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights()); if(!lstm_params.has_cifg_opt()) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_input_weights()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_input_weights()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_input_weights()); } } const UniformQuantizationInfo qinput = input->quantization_info().uniform(); const UniformQuantizationInfo qcell_state_in = cell_state_in->quantization_info().uniform(); const UniformQuantizationInfo qoutput_state_in = output_state_in->quantization_info().uniform(); // Calculate and decompose effective scales for optimizing matmul calculation const int32_t cell_shift = log2(qcell_state_in.scale); ARM_COMPUTE_RETURN_ERROR_ON(cell_shift > -9); // Calculate quantized parameters for clipping. int16_t quantized_cell_clip = 0; if(lstm_params.cell_clip() > 0.0f) { quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in); } // Precompute effective bias for optimizing the matmul computations. const TensorInfo eff_bias_info(TensorShape(num_units), 1, DataType::S32); const TensorInfo projection_eff_bias_info(TensorShape(output_size), 1, DataType::S32); if(!lstm_params.has_cifg_opt()) { ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(lstm_params.input_to_input_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(lstm_params.recurrent_to_input_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true))); } ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(input_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(recurrent_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(input_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(recurrent_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(input_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(recurrent_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true))); if(lstm_params.has_projection()) { ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(lstm_params.projection_weights(), &projection_eff_bias_info, GEMMLowpReductionKernelInfo(output_size, false, lstm_params.hidden_state_zero(), true))); if(lstm_params.projection_bias() != nullptr) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.projection_bias(), 1, DataType::S32); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(lstm_params.projection_bias(), &projection_eff_bias_info, &projection_eff_bias_info, ConvertPolicy::SATURATE)); } } const TensorInfo input_weights_transposed(TensorShape(num_units, input_size), 1, input_to_forget_weights->data_type(), input_to_forget_weights->quantization_info()); const TensorInfo recurrent_weights_transposed(TensorShape(num_units, output_size), 1, recurrent_to_forget_weights->data_type(), recurrent_to_forget_weights->quantization_info()); // Validate weights transpose ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(input_to_forget_weights, &input_weights_transposed)); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(input_to_cell_weights, &input_weights_transposed)); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(input_to_output_weights, &input_weights_transposed)); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(recurrent_to_forget_weights, &recurrent_weights_transposed)); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(recurrent_to_cell_weights, &recurrent_weights_transposed)); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(recurrent_to_output_weights, &recurrent_weights_transposed)); if(!lstm_params.has_cifg_opt()) { ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(lstm_params.input_to_input_weights(), &input_weights_transposed)); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(lstm_params.recurrent_to_input_weights(), &recurrent_weights_transposed)); } if(lstm_params.has_projection()) { const TensorInfo projection_weights_transposed(TensorShape(output_size, num_units), 1, lstm_params.projection_weights()->data_type(), lstm_params.projection_weights()->quantization_info()); ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(lstm_params.projection_weights(), &projection_weights_transposed)); } GEMMLowpOutputStageInfo gemmlowp_info; gemmlowp_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; gemmlowp_info.gemmlowp_min_bound = std::numeric_limits::lowest(); gemmlowp_info.gemmlowp_max_bound = std::numeric_limits::max(); gemmlowp_info.output_data_type = DataType::QSYMM16; const bool has_layer_norm = lstm_params.use_layer_norm(); // Forget gate. ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.forget_intermediate_scale() == 0); const TensorInfo forget_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0)); const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32); const float input_to_forget_scale = input_to_forget_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.forget_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_forget_scale, &mm_out_info, &forget_outstage_info)); const float recurrent_to_forget_scale = recurrent_to_forget_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.forget_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_forget_scale, &mm_out_info, &forget_outstage_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&forget_outstage_info, &forget_outstage_info, &forget_outstage_info, ConvertPolicy::SATURATE)); if(lstm_params.has_peephole_opt()) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1, DataType::QSYMM16); ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state_in, lstm_params.cell_to_forget_weights(), &mm_out_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO)); const float cell_to_forget_scale = std::pow(2, cell_shift) * lstm_params.cell_to_forget_weights()->quantization_info().uniform().scale / lstm_params.forget_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift)); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&mm_out_info, nullptr, &forget_outstage_info, gemmlowp_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&forget_outstage_info, &forget_outstage_info, &forget_outstage_info, ConvertPolicy::SATURATE)); } if(has_layer_norm) { const ITensorInfo *w_info = lstm_params.forget_layer_norm_weights(); const ITensorInfo *b_info = forget_gate_bias; ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(forget_outstage_info, *w_info, *b_info)); } // Output quantization info of Sigmoid and Tanh activations const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0); const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&forget_outstage_info, &forget_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC))); // Modulation gate. ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_intermediate_scale() == 0); const TensorInfo cell_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.cell_intermediate_scale(), 0)); const float input_to_cell_scale = input_to_cell_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.cell_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_cell_scale, &mm_out_info, &cell_outstage_info)); const float recurrent_to_cell_scale = recurrent_to_cell_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.cell_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &input_weights_transposed, &eff_bias_info, recurrent_to_cell_scale, &mm_out_info, &cell_outstage_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&cell_outstage_info, &cell_outstage_info, &cell_outstage_info, ConvertPolicy::SATURATE)); if(has_layer_norm) { const ITensorInfo *w_info = lstm_params.cell_layer_norm_weights(); const ITensorInfo *b_info = cell_bias; ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(cell_outstage_info, *w_info, *b_info)); } const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&cell_outstage_info, &cell_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f))); // Input gate. const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); if(lstm_params.has_cifg_opt()) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(lstm_params.input_gate_bias() != nullptr, "Input gate bias must not be present when CIFG is used"); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticSubtraction::validate(&input_gate_info, &forget_gate_info, &forget_gate_info, ConvertPolicy::SATURATE)); } else { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights(), lstm_params.input_gate_bias()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_forget_weights, lstm_params.input_to_input_weights()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_forget_weights, lstm_params.recurrent_to_input_weights()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, lstm_params.input_gate_bias()); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, lstm_params.input_gate_bias()); ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_intermediate_scale() == 0); const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0)); const float input_to_input_scale = lstm_params.input_to_input_weights()->quantization_info().uniform().scale * qinput.scale / lstm_params.input_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_input_scale, &mm_out_info, &input_outstage_info)); const float recurrent_to_input_scale = lstm_params.recurrent_to_input_weights()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.input_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_input_scale, &mm_out_info, &input_outstage_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&input_outstage_info, &input_outstage_info, &input_outstage_info, ConvertPolicy::SATURATE)); if(lstm_params.has_peephole_opt()) { ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state_in, lstm_params.cell_to_input_weights(), &mm_out_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO)); const float cell_to_input_scale = std::pow(2, cell_shift) * lstm_params.cell_to_input_weights()->quantization_info().uniform().scale / lstm_params.input_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift)); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&mm_out_info, &eff_bias_info, &input_outstage_info, gemmlowp_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&input_outstage_info, &input_outstage_info, &input_outstage_info, ConvertPolicy::SATURATE)); } if(has_layer_norm) { const ITensorInfo *w_info = lstm_params.input_layer_norm_weights(); const ITensorInfo *b_info = lstm_params.input_gate_bias(); ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(cell_outstage_info, *w_info, *b_info)); } ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&input_outstage_info, &input_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 1.f, 1.f))); } // Cell. ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(&forget_gate_info, cell_state_in, &forget_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO)); ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(&input_gate_info, cell_state_in, &cell_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&forget_gate_info, &cell_gate_info, cell_state_out, ConvertPolicy::SATURATE)); if(quantized_cell_clip > 0) { ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(cell_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_cell_clip, quantized_cell_clip))); } // Output gate. ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.output_intermediate_scale() == 0); const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0)); const float input_to_output_scale = input_to_output_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.output_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_output_scale, &mm_out_info, &output_outstage_info)); const float recurrent_to_output_scale = recurrent_to_output_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.output_intermediate_scale(); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_output_scale, &mm_out_info, &output_outstage_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&output_outstage_info, &output_outstage_info, &output_outstage_info, ConvertPolicy::SATURATE)); if(lstm_params.has_peephole_opt()) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_output_weights(), 1, DataType::QSYMM16); // TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplicationKernel // Here we are not using the output stage because all operations are done in float // const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale(); // ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift)); ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state_out, lstm_params.cell_to_output_weights(), &output_outstage_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO)); ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&output_outstage_info, &output_outstage_info, &output_outstage_info, ConvertPolicy::SATURATE)); } if(has_layer_norm) { const ITensorInfo *w_info = lstm_params.output_layer_norm_weights(); const ITensorInfo *b_info = output_gate_bias; ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(output_outstage_info, *w_info, *b_info)); } const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo); ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&output_outstage_info, &output_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC))); // Hidden. ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(cell_state_out, &input_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f))); const TensorInfo hidden_mul_res(TensorShape(num_units, batch_size), 1, DataType::S32); const TensorInfo hidden_out_info(TensorShape(num_units, batch_size), 1, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.hidden_state_scale() == 0); ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(&output_gate_info, &input_gate_info, &hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO)); const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15); ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true)); gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero(); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&hidden_mul_res, nullptr, &hidden_out_info, gemmlowp_info)); const bool projection_tensor_copy_required = num_units != output_size; // Projection. if(lstm_params.has_projection()) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(recurrent_to_forget_weights, lstm_params.projection_weights()); ARM_COMPUTE_RETURN_ERROR_ON(qoutput_state_in.scale == 0); const UniformQuantizationInfo qprojection = lstm_params.projection_weights()->quantization_info().uniform(); const float projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale; ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(projection_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift)); gemmlowp_info.gemmlowp_offset = qoutput_state_in.offset; gemmlowp_info.gemmlowp_min_bound = std::numeric_limits::lowest(); gemmlowp_info.gemmlowp_max_bound = std::numeric_limits::max(); gemmlowp_info.output_data_type = DataType::QASYMM8_SIGNED; const TensorInfo projection_outstage_info(*output_state_out); const TensorInfo projection_weights_transposed(TensorShape(output_size, num_units), 1, lstm_params.projection_weights()->data_type(), lstm_params.projection_weights()->quantization_info()); TensorInfo projection_mm_out_info{ mm_out_info }; projection_mm_out_info.set_tensor_shape(TensorShape(output_size, batch_size)); ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, &hidden_out_info, &projection_weights_transposed, &projection_eff_bias_info, projection_scale, &projection_mm_out_info, &projection_outstage_info)); if(projection_tensor_copy_required) { ARM_COMPUTE_RETURN_ON_ERROR(CLQLSTMLayer::TensorCopyKernel::validate(*output_state_out, projection_outstage_info)); } ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(output_state_out, output_state_out, output_state_out, ConvertPolicy::SATURATE)); if(projection_tensor_copy_required) { ARM_COMPUTE_RETURN_ON_ERROR(CLQLSTMLayer::TensorCopyKernel::validate(projection_outstage_info, *output_state_out)); } int8_t quantized_projection_clip{ 0 }; if(lstm_params.projection_clip() > 0.0f) { quantized_projection_clip = quantize_qasymm8_signed(lstm_params.projection_clip(), qprojection); } if(quantized_projection_clip > 0) { ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_projection_clip, quantized_projection_clip))); } } else { if(projection_tensor_copy_required) { ARM_COMPUTE_RETURN_ON_ERROR(CLQLSTMLayer::TensorCopyKernel::validate(hidden_out_info, *output_state_out)); } } if(cell_state_out->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(cell_state_in, cell_state_out); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(cell_state_in, cell_state_out); } if(output_state_out->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_out); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output_state_in, output_state_out); } ARM_COMPUTE_RETURN_ON_ERROR(CLCopyKernel::validate(output_state_out, output)); return Status{}; } void CLQLSTMLayer::run() { prepare(); // Acquire all the temporaries MemoryGroupResourceScope scope_mg(_memory_group); // Forget gate. _mm_input_to_forget.run(); _input_to_forget_outstage.run(); _mm_recurrent_to_forget.run(); _recurrent_to_forget_outstage.run(); _accumulate_input_recurrent_forget.run(); if(_has_peephole) { CLScheduler::get().enqueue(_pixelwise_mul_cell_to_forget); _cell_to_forget_outstage.run(); _accumulate_cell_forget.run(); } if(_has_layer_norm) { CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Forget)); } _forget_gate_sigmoid.run(); // Modulation gate. _mm_input_to_cell.run(); _input_to_cell_outstage.run(); _mm_recurrent_to_cell.run(); _recurrent_to_cell_outstage.run(); _accumulate_input_recurrent_modulation.run(); if(_has_layer_norm) { CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Cell)); } _cell_gate_tanh.run(); // Input gate if(_has_cifg) { _input_gate_sub.run(); } else { _mm_input_to_input.run(); _input_to_input_outstage.run(); _mm_recurrent_to_input.run(); _recurrent_to_input_outstage.run(); _accumulate_input_recurrent_input.run(); if(_has_peephole) { CLScheduler::get().enqueue(_pixelwise_mul_cell_to_input); _cell_to_input_outstage.run(); _accumulate_cell_input.run(); } if(_has_layer_norm) { CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Input)); } _input_gate_sigmoid.run(); } // Cell. CLScheduler::get().enqueue(_pixelwise_mul_forget_cell); CLScheduler::get().enqueue(_pixelwise_mul_input_cell); _add_forget_cell.run(); if(_has_cell_clipping) { _cell_clip.run(); } // Output gate. _mm_input_to_output.run(); _input_to_output_outstage.run(); _mm_recurrent_to_output.run(); _recurrent_to_output_outstage.run(); _accumulate_input_recurrent_output.run(); if(_has_peephole) { CLScheduler::get().enqueue(_pixelwise_mul_cell_to_output); _cell_to_output_outstage.run(); _accumulate_cell_to_output.run(); } if(_has_layer_norm) { CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Output)); } _output_gate_sigmoid.run(); // Hidden. _hidden_tanh.run(); CLScheduler::get().enqueue(_pixelwise_mul_hidden); _hidden_outstage.run(); // Projection. if(_has_projection) { _mm_projection.run(); _projection_outstage.run(); if(_projection_tensor_copy_required) { _projection_output_to_accumulate_copy.run(); } _accumulate_projection.run(); if(_projection_tensor_copy_required) { _projection_accumulate_to_output_copy.run(); } if(_has_projection_clipping) { _projection_clip.run(); } } else { if(_projection_tensor_copy_required) { _hidden_to_output_copy.run(); } } // Copy output_state_out to output CLScheduler::get().enqueue(_copy_output); } void CLQLSTMLayer::prepare() { if(!_is_prepared) { // Pre-transpose weights to be used in GEMM. _input_to_forget_weights_transposed.allocator()->allocate(); _input_to_cell_weights_transposed.allocator()->allocate(); _input_to_output_weights_transposed.allocator()->allocate(); _recurrent_to_forget_weights_transposed.allocator()->allocate(); _recurrent_to_cell_weights_transposed.allocator()->allocate(); _recurrent_to_output_weights_transposed.allocator()->allocate(); _transpose_input_to_forget_weights.run(); _transpose_input_to_cell_weights.run(); _transpose_input_to_output_weights.run(); _transpose_recurrent_to_forget_weights.run(); _transpose_recurrent_to_cell_weights.run(); _transpose_recurrent_to_output_weights.run(); // Precompute effective biases if(_has_cifg) { _ones.map(true); std::fill_n(reinterpret_cast(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 32767); _ones.unmap(); } else { _input_to_input_eff_bias.allocator()->allocate(); _recurrent_to_input_eff_bias.allocator()->allocate(); CLScheduler::get().enqueue(_input_to_input_reduction); CLScheduler::get().enqueue(_recurrent_to_input_reduction); _input_to_input_weights_transposed.allocator()->allocate(); _recurrent_to_input_weights_transposed.allocator()->allocate(); _transpose_input_to_input_weights.run(); _transpose_recurrent_to_input_weights.run(); _input_to_input_weights->mark_as_unused(); _recurrent_to_input_weights->mark_as_unused(); } _input_to_forget_eff_bias.allocator()->allocate(); _recurrent_to_forget_eff_bias.allocator()->allocate(); _input_to_cell_eff_bias.allocator()->allocate(); _recurrent_to_cell_eff_bias.allocator()->allocate(); _input_to_output_eff_bias.allocator()->allocate(); _recurrent_to_output_eff_bias.allocator()->allocate(); CLScheduler::get().enqueue(_input_to_forget_reduction); CLScheduler::get().enqueue(_recurrent_to_forget_reduction); CLScheduler::get().enqueue(_input_to_cell_reduction); CLScheduler::get().enqueue(_recurrent_to_cell_reduction); CLScheduler::get().enqueue(_input_to_output_reduction); CLScheduler::get().enqueue(_recurrent_to_output_reduction); if(_has_projection) { _projection_eff_bias.allocator()->allocate(); CLScheduler::get().enqueue(_projection_reduction); if(_projection_bias != nullptr) { _projection_bias_add.run(); _projection_bias->mark_as_unused(); } _projection_weights_transposed.allocator()->allocate(); _transpose_projection_weights.run(); _projection_weights->mark_as_unused(); if(!_projection_tensor_copy_required) { _hidden_gate.mark_as_unused(); _projection_accumulate_res.mark_as_unused(); } } // Mark weights as unused _input_to_forget_weights->mark_as_unused(); _input_to_cell_weights->mark_as_unused(); _input_to_output_weights->mark_as_unused(); _recurrent_to_forget_weights->mark_as_unused(); _recurrent_to_cell_weights->mark_as_unused(); _recurrent_to_output_weights->mark_as_unused(); CLScheduler::get().queue().finish(); _is_prepared = true; } } } // namespace arm_compute