/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLPadLayer.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "support/ToolchainSupport.h" namespace arm_compute { CLPadLayer::CLPadLayer() : _copy_kernel(), _mode(), _padding(), _memset_kernel(), _num_dimensions(0), _slice_functions(nullptr), _concat_functions(nullptr), _slice_results(nullptr), _concat_results(nullptr) { } void CLPadLayer::configure_constant_mode(ICLTensor *input, ICLTensor *output, const PaddingList &padding, const PixelValue constant_value) { // Set the pages of the output to the constant_value. _memset_kernel.configure(output, constant_value); // Fill out padding list with zeroes. PaddingList padding_extended = padding; for(size_t i = padding.size(); i < TensorShape::num_max_dimensions; i++) { padding_extended.emplace_back(PaddingInfo{ 0, 0 }); } // Create a window within the output tensor where the input will be copied. Window copy_window = Window(); for(uint32_t i = 0; i < output->info()->num_dimensions(); ++i) { copy_window.set(i, Window::Dimension(padding_extended[i].first, padding_extended[i].first + input->info()->dimension(i), 1)); } // Copy the input to the output, leaving the padding filled with the constant_value. _copy_kernel.configure(input, output, PaddingList(), ©_window); } void CLPadLayer::configure_reflect_symmetric_mode(ICLTensor *input, ICLTensor *output) { int64_t last_padding_dimension = _padding.size() - 1; // Reflecting can be performed by effectively unfolding the input as follows: // For each dimension starting at DimX: // Create a before and after slice, which values depend on the selected padding mode // Concatenate the before and after padding with the tensor to be padded // Two strided slice functions will be required for each dimension padded as well as a // concatenate function and the tensors to hold the temporary results. _slice_functions = arm_compute::support::cpp14::make_unique(2 * _num_dimensions); _slice_results = arm_compute::support::cpp14::make_unique(2 * _num_dimensions); _concat_functions = arm_compute::support::cpp14::make_unique(_num_dimensions); _concat_results = arm_compute::support::cpp14::make_unique(_num_dimensions - 1); Coordinates starts_before, ends_before, starts_after, ends_after, strides; ICLTensor *prev = input; for(uint32_t i = 0; i < _num_dimensions; ++i) { // Values in strides from the previous dimensions need to be set to 1 to avoid reversing again. if(i > 0) { strides.set(i - 1, 1); } if(_padding[i].first > 0 || _padding[i].second > 0) { // Set the starts, ends, and strides values for the current dimension. // Due to the bit masks passed to strided slice, the values below the current dimension in // starts and ends will be ignored so do not need to be modified. if(_mode == PaddingMode::REFLECT) { starts_before.set(i, _padding[i].first); ends_before.set(i, 0); starts_after.set(i, input->info()->dimension(i) - 2); ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 2); strides.set(i, -1); } else { starts_before.set(i, _padding[i].first - 1); ends_before.set(i, -1); starts_after.set(i, input->info()->dimension(i) - 1); ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 1); strides.set(i, -1); } // Strided slice wraps negative indexes around to the end of the range, // instead this should indicate use of the full range and so the bit mask will be modified. const int32_t begin_mask_before = starts_before[i] < 0 ? ~0 : ~(1u << i); const int32_t end_mask_before = ends_before[i] < 0 ? ~0 : ~(1u << i); const int32_t begin_mask_after = starts_after[i] < 0 ? ~0 : ~(1u << i); const int32_t end_mask_after = ends_after[i] < 0 ? ~0 : ~(1u << i); // Reflect the input values for the padding before and after the input. std::vector concat_vector; if(_padding[i].first > 0) { if(i < prev->info()->num_dimensions()) { _slice_functions[2 * i].configure(prev, &_slice_results[2 * i], starts_before, ends_before, strides, begin_mask_before, end_mask_before); concat_vector.push_back(&_slice_results[2 * i]); } else { // Performing the slice is unnecessary if the result would simply be a copy of the tensor. concat_vector.push_back(prev); } } concat_vector.push_back(prev); if(_padding[i].second > 0) { if(i < prev->info()->num_dimensions()) { _slice_functions[2 * i + 1].configure(prev, &_slice_results[2 * i + 1], starts_after, ends_after, strides, begin_mask_after, end_mask_after); concat_vector.push_back(&_slice_results[2 * i + 1]); } else { // Performing the slice is unnecessary if the result would simply be a copy of the tensor. concat_vector.push_back(prev); } } // Concatenate the padding before and after with the input. ICLTensor *out = (static_cast(i) == last_padding_dimension) ? output : &_concat_results[i]; _concat_functions[i].configure(concat_vector, out, i); prev = out; } } for(uint32_t i = 0; i < _num_dimensions; ++i) { if((static_cast(i) != last_padding_dimension)) { _concat_results[i].allocator()->allocate(); } _slice_results[2 * i].allocator()->allocate(); _slice_results[2 * i + 1].allocator()->allocate(); } } void CLPadLayer::configure(ICLTensor *input, ICLTensor *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode) { ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), output->info(), padding, constant_value, mode)); _padding = padding; _mode = mode; TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->info()->tensor_shape(), _padding); auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(padded_shape)); // Find the last dimension requiring padding so that it is known when to write to output and whether any padding is applied. int64_t last_padding_dimension = _padding.size() - 1; for(; last_padding_dimension >= 0; --last_padding_dimension) { if(_padding[last_padding_dimension].first > 0 || _padding[last_padding_dimension].second > 0) { break; } } _num_dimensions = last_padding_dimension + 1; if(_num_dimensions > 0) { switch(_mode) { case PaddingMode::CONSTANT: { configure_constant_mode(input, output, padding, constant_value); break; } case PaddingMode::REFLECT: case PaddingMode::SYMMETRIC: { configure_reflect_symmetric_mode(input, output); break; } default: ARM_COMPUTE_ERROR("Padding mode not supported."); } } else { // Copy the input to the whole output if no padding is applied _copy_kernel.configure(input, output); } } Status CLPadLayer::validate(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, PixelValue constant_value, PaddingMode mode) { ARM_COMPUTE_RETURN_ERROR_ON(padding.size() > input->num_dimensions()); TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->tensor_shape(), padding); // Use CLCopyKernel and CLMemsetKernel to validate all padding modes as this includes all of the shape and info validation. PaddingList padding_extended = padding; for(size_t i = padding.size(); i < TensorShape::num_max_dimensions; i++) { padding_extended.emplace_back(PaddingInfo{ 0, 0 }); } Window copy_window = Window(); for(uint32_t i = 0; i < padded_shape.num_dimensions(); ++i) { copy_window.set(i, Window::Dimension(padding_extended[i].first, padding_extended[i].first + input->dimension(i), 1)); } if(output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), padded_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(output, input); ARM_COMPUTE_RETURN_ON_ERROR(CLCopyKernel::validate(input, output, PaddingList(), ©_window)); ARM_COMPUTE_RETURN_ON_ERROR(CLMemsetKernel::validate(output, constant_value)); } else { ARM_COMPUTE_RETURN_ON_ERROR(CLCopyKernel::validate(input, &input->clone()->set_tensor_shape(padded_shape), PaddingList(), ©_window)); ARM_COMPUTE_RETURN_ON_ERROR(CLMemsetKernel::validate(&input->clone()->set_tensor_shape(padded_shape), constant_value)); } switch(mode) { case PaddingMode::CONSTANT: { break; } case PaddingMode::REFLECT: case PaddingMode::SYMMETRIC: { for(uint32_t i = 0; i < padding.size(); ++i) { if(mode == PaddingMode::REFLECT) { ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first >= input->dimension(i)); ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second >= input->dimension(i)); } else { ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first > input->dimension(i)); ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second > input->dimension(i)); } } break; } default: { ARM_COMPUTE_ERROR("Invalid mode"); } } return Status{}; } void CLPadLayer::run() { if(_num_dimensions > 0) { switch(_mode) { case PaddingMode::CONSTANT: { CLScheduler::get().enqueue(_memset_kernel, false); CLScheduler::get().enqueue(_copy_kernel, true); break; } case PaddingMode::REFLECT: case PaddingMode::SYMMETRIC: { for(uint32_t i = 0; i < _num_dimensions; ++i) { if(_padding[i].first > 0 || _padding[i].second > 0) { if(_padding[i].first > 0 && _slice_results[2 * i].info()->total_size() > 0) { _slice_functions[2 * i].run(); } if(_padding[i].second > 0 && _slice_results[2 * i + 1].info()->total_size() > 0) { _slice_functions[2 * i + 1].run(); } CLScheduler::get().sync(); _concat_functions[i].run(); CLScheduler::get().sync(); } } break; } default: ARM_COMPUTE_ERROR("Padding mode not supported."); } } else { CLScheduler::get().enqueue(_copy_kernel, true); } } } // namespace arm_compute