/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; namespace { inline bool is_interleaved_transposed(int m, int n, int k, bool reshape_b_only_on_first_run, GPUTarget gpu_target) { bool flag = true; if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72, GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT)) { // COMPMID-852 if(k > 256 && m > 4 && reshape_b_only_on_first_run) { flag = ((0.72f + n * 0.10766f) < (n * 0.1284f)); } else { flag = false; } } else { flag = m > 1; } return flag; } } // namespace CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _mm_kernel(), _mtx_a_reshape_kernel(), _mtx_b_reshape_kernel(), _mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(), _offset_contribution_kernel(), _offset_contribution_output_stage_kernel(), _vector_sum_col(), _vector_sum_row(), _tmp_a(), _tmp_b(), _mm_result_s32(), _original_b(nullptr), _a_offset(0), _b_offset(0), _is_interleaved_transposed(true), _reshape_b_only_on_first_run(false), _is_prepared(false), _fuse_output_stage(false) { } void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output); ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info)); _is_prepared = false; _original_b = b; _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _a_offset = a->info()->quantization_info().offset; _b_offset = b->info()->quantization_info().offset; // Get the GPU target const GPUTarget gpu_target = CLScheduler::get().target(); // Set the target for the kernels _mtx_a_reshape_kernel.set_target(gpu_target); _mm_kernel.set_target(gpu_target); const ICLTensor *matrix_a = a; const ICLTensor *matrix_b = b; GEMMRHSMatrixInfo rhs_info; // Arguments used by GEMMReshapeInfo // If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo // in order to know how the matrices have been reshaped bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d(); const bool unroll_block = dot8_supported(CLKernelLibrary::get().get_device()); const int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1); const int n = b->info()->dimension(0); const int k = a->info()->dimension(0); const int depth_output_gemm3d = gemm_info.depth_output_gemm3d(); constexpr int mult_transpose1xW_width = 1; constexpr int mult_interleave4x4_height = 1; rhs_info.n0 = 16 / b->info()->element_size(); rhs_info.k0 = 1; rhs_info.h0 = mult_transpose1xW_width; rhs_info.interleave = false; rhs_info.transpose = false; // Check if we need to reshape the matrix A and matrix B _is_interleaved_transposed = is_interleaved_transposed(m, n, k, _reshape_b_only_on_first_run, gpu_target); if(_is_interleaved_transposed) { // if _is_interleaved_transposed is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D reinterpret_input_as_3d = false; matrix_a = &_tmp_a; matrix_b = &_tmp_b; _memory_group.manage(&_tmp_a); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_tmp_b); } // Configure interleave kernel _mtx_a_reshape_kernel.configure(a, &_tmp_a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d(), unroll_block); // Configure transpose kernel _mtx_b_reshape_kernel.configure(b, &_tmp_b, rhs_info); } // Initialize matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0) { TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32); _vector_sum_col.allocator()->init(info_vector_sum_col); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_vector_sum_col); } // Configure Matrix B reduction kernel _mtx_b_reduction_kernel.configure(b, &_vector_sum_col); } // Initialize Matrix A reduction kernel only if _b_offset is not equal to 0 if(_b_offset != 0) { TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32); _vector_sum_row.allocator()->init(info_vector_sum_row); _memory_group.manage(&_vector_sum_row); // Configure matrix A reduction kernel _mtx_a_reduction_kernel.configure(a, &_vector_sum_row); } // If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE) { _fuse_output_stage = true; _memory_group.manage(&_mm_result_s32); // Configure matrix multiply kernel _mm_kernel.configure(matrix_a, matrix_b, &_mm_result_s32, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, depth_output_gemm3d, reinterpret_input_as_3d)); // Configure offset contribution kernel _offset_contribution_output_stage_kernel.configure(&_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, output, a->info()->dimension(0), _a_offset, _b_offset, gemm_info.gemmlowp_output_stage()); _mm_result_s32.allocator()->allocate(); } else { // Configure matrix multiply kernel _mm_kernel.configure(matrix_a, matrix_b, output, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, depth_output_gemm3d, reinterpret_input_as_3d)); // Configure offset contribution kernel _offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, a->info()->dimension(0), _a_offset, _b_offset); } // Allocate tensors if(_is_interleaved_transposed) { _tmp_a.allocator()->allocate(); if(!_reshape_b_only_on_first_run) { _tmp_b.allocator()->allocate(); } } if(_a_offset != 0 && !_reshape_b_only_on_first_run) { _vector_sum_col.allocator()->allocate(); } if(_b_offset != 0) { _vector_sum_row.allocator()->allocate(); } } Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); int32_t a_offset = a->quantization_info().offset; int32_t b_offset = b->quantization_info().offset; const ITensorInfo *matrix_a_info = a; const ITensorInfo *matrix_b_info = b; TensorInfo tmp_a_info{}; TensorInfo tmp_b_info{}; GEMMRHSMatrixInfo rhs_info; bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d(); const int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1); const int n = b->dimension(0); const int k = a->dimension(0); constexpr int mult_transpose1xW_width = 1; constexpr int mult_interleave4x4_height = 1; const int depth_output_gemm3d = gemm_info.depth_output_gemm3d(); rhs_info.n0 = 16 / b->element_size(); rhs_info.k0 = 1; rhs_info.h0 = mult_transpose1xW_width; rhs_info.interleave = false; rhs_info.transpose = false; bool reshape_matrices = is_interleaved_transposed(m, n, k, gemm_info.reshape_b_only_on_first_run(), CLScheduler::get().target()); // if reshape_matrices is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D if(reshape_matrices) { reinterpret_input_as_3d = false; } const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, depth_output_gemm3d, reinterpret_input_as_3d); if(reshape_matrices) { matrix_a_info = &tmp_a_info; matrix_b_info = &tmp_b_info; // Validate interleave kernel auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d()))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &tmp_a_info, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())); // Validate transpose kernel auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_rhs_reshaped_shape(*b, rhs_info))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(b, &tmp_b_info, rhs_info)); } TensorInfo info_vector_sum_col, info_vector_sum_row; // Validate matrix B reduction kernel only if _a_offset is not equal to 0 if(a_offset != 0) { info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32); // Configure Matrix B reduction kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col)); } // Validate Matrix A reduction kernel only if _b_offset is not equal to 0 if(b_offset != 0) { info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32); // Configure matrix A reduction kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row)); } if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE) { TensorInfo mm_result_s32_info{}; // Output tensor auto inizialitation if not yet initialized auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, reshape_matrices, reshape_info)).set_data_type(DataType::S32)); // Validate matrix multiply ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, reshape_matrices, reshape_info)); // Validate offset contribution kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info, a_offset == 0 ? nullptr : &info_vector_sum_col, b_offset == 0 ? nullptr : &info_vector_sum_row, c, output, a_offset, b_offset, gemm_info.gemmlowp_output_stage())); } else { // Validate matrix multiply ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output, reshape_matrices, reshape_info)); // Validate offset contribution kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output, a_offset == 0 ? nullptr : &info_vector_sum_col, b_offset == 0 ? nullptr : &info_vector_sum_row, c, a_offset, b_offset)); } return Status{}; } void CLGEMMLowpMatrixMultiplyCore::run() { prepare(); _memory_group.acquire(); if(_is_interleaved_transposed) { // Run reshape matrix A CLScheduler::get().enqueue(_mtx_a_reshape_kernel, false); if(!_reshape_b_only_on_first_run) { // Run reshape matrix B CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false); } } // Run matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0 && !_reshape_b_only_on_first_run) { CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false); } // Run matrix multiply CLScheduler::get().enqueue(_mm_kernel, false); // Run matrix A reduction kernel only if _b_offset is not equal to 0 if(_b_offset != 0) { CLScheduler::get().enqueue(_mtx_a_reduction_kernel, false); } if(_fuse_output_stage) { // Run offset contribution/output stage kernel CLScheduler::get().enqueue(_offset_contribution_output_stage_kernel, true); } else { // Run offset contribution kernel CLScheduler::get().enqueue(_offset_contribution_kernel, true); } _memory_group.release(); } void CLGEMMLowpMatrixMultiplyCore::prepare() { if(!_is_prepared) { if(_is_interleaved_transposed && _reshape_b_only_on_first_run) { ARM_COMPUTE_ERROR_ON(!_original_b->is_used()); // Run reshape kernel and mark original weights tensor as unused _tmp_b.allocator()->allocate(); CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false); _original_b->mark_as_unused(); } // Run matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0 && _reshape_b_only_on_first_run) { _vector_sum_col.allocator()->allocate(); CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false); } CLScheduler::get().queue().finish(); _is_prepared = true; } }