/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/gemm/native/CLGEMMNativeKernelConfiguration.h" #include "arm_compute/core/CL/gemm/reshaped_only_rhs/CLGEMMReshapedOnlyRHSKernelConfiguration.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/KernelDescriptors.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/CL/gemm/CLGEMMKernelSelection.h" namespace arm_compute { using namespace arm_compute::misc::shape_calculator; using namespace arm_compute::cl_gemm; namespace { inline bool is_gemm_reshaped(unsigned int m, unsigned int n, unsigned int k, DataType data_type, bool reshape_b_only_on_first_run) { std::unique_ptr gemm_kernel = CLGEMMKernelSelectionFactory::create(CLScheduler::get().target()); ARM_COMPUTE_ERROR_ON_NULLPTR(gemm_kernel.get()); CLGEMMKernelSelectionParams params; params.m = m; params.n = n; params.k = k; params.is_rhs_constant = reshape_b_only_on_first_run; params.data_type = data_type; switch(gemm_kernel->select_kernel(params)) { case CLGEMMKernelType::NATIVE: return false; case CLGEMMKernelType::RESHAPED_ONLY_RHS: return true; default: ARM_COMPUTE_ERROR("Not supported gemmlowp kernel!"); } } } // namespace CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _weights_to_qasymm8(), _mm_native_kernel(), _mm_reshaped_only_rhs_kernel(), _mtx_b_reshape_kernel(), _mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(), _offset_contribution_kernel(), _offset_contribution_output_stage_kernel(), _qasymm8_weights(), _vector_sum_col(), _vector_sum_row(), _tmp_b(), _mm_result_s32(), _gemm_output_stage_multipliers(), _gemm_output_stage_shifts(), _matrix_a(nullptr), _original_b(nullptr), _output(nullptr), _a_offset(0), _b_offset(0), _is_gemm_reshaped(true), _reshape_b_only_on_first_run(false), _is_prepared(false), _run_output_stage(false), _convert_to_qasymm8(false), _run_offset_contribution(false) { } void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info) { configure(CLKernelLibrary::get().get_compile_context(), a, b, c, output, gemm_info); } void CLGEMMLowpMatrixMultiplyCore::configure(const CLCompileContext &compile_context, const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output); ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info)); _is_prepared = false; _original_b = b; _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _a_offset = a->info()->quantization_info().uniform().offset; _matrix_a = a; _output = output; _convert_to_qasymm8 = is_data_type_quantized_per_channel(b->info()->data_type()) && is_data_type_quantized_symmetric(b->info()->data_type()) && a->info()->data_type() == DataType::QASYMM8; _b_offset = _convert_to_qasymm8 ? -128 : b->info()->quantization_info().uniform().offset; // Get the GPU target const GPUTarget gpu_target = CLScheduler::get().target(); // Set the target for the kernels _mm_native_kernel.set_target(gpu_target); _mm_reshaped_only_rhs_kernel.set_target(gpu_target); GEMMRHSMatrixInfo rhs_info; GEMMLHSMatrixInfo lhs_info; // Arguments used by GEMMReshapeInfo // If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo // in order to know how the matrices have been reshaped bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d(); const unsigned int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1); const unsigned int n = b->info()->dimension(0); const unsigned int k = a->info()->dimension(0); const unsigned int batch_size = reinterpret_input_as_3d ? a->info()->dimension(3) : a->info()->dimension(2); const int depth_output_gemm3d = gemm_info.depth_output_gemm3d(); // Check if we need to reshape the matrix A and matrix B _is_gemm_reshaped = is_gemm_reshaped(m, n, k, a->info()->data_type(), _reshape_b_only_on_first_run); if(_convert_to_qasymm8) { // Set data type for converted weights TensorInfo weights_info(*b->info()); weights_info.set_data_type(DataType::QASYMM8); _qasymm8_weights.allocator()->init(weights_info); _weights_to_qasymm8.configure(compile_context, b, &_qasymm8_weights, ConvertPolicy::WRAP, 0); } const ICLTensor *matrix_b = _convert_to_qasymm8 ? &_qasymm8_weights : b; if(_is_gemm_reshaped) { matrix_b = &_tmp_b; if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_tmp_b); } // Pick up the GEMM configuration // Datatype is DataType::QASYMM8 or DataType::QASYMM8_SIGNED doesn't matter, since it only affect the shape configuration std::tie(lhs_info, rhs_info) = CLGEMMReshapedOnlyRHSKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8); // Configure reshape RHS kernel _mtx_b_reshape_kernel.configure(compile_context, _convert_to_qasymm8 ? &_qasymm8_weights : b, &_tmp_b, rhs_info); } // Using default reduction info const GEMMLowpReductionKernelInfo reduction_info {}; // Initialize matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0) { TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32); _vector_sum_col.allocator()->init(info_vector_sum_col); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_vector_sum_col); } // Configure Matrix B reduction kernel _mtx_b_reduction_kernel.configure(compile_context, _convert_to_qasymm8 ? &_qasymm8_weights : b, &_vector_sum_col, reduction_info); } // Initialize Matrix A reduction kernel only if _b_offset is not equal to 0 if(_b_offset != 0) { TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32); _vector_sum_row.allocator()->init(info_vector_sum_row); _memory_group.manage(&_vector_sum_row); // Configure matrix A reduction kernel _mtx_a_reduction_kernel.configure(compile_context, a, &_vector_sum_row, reduction_info); } GEMMKernelInfo gemm_kernel_info; gemm_kernel_info.m = m; gemm_kernel_info.n = n; gemm_kernel_info.k = k; gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d; gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d; gemm_kernel_info.lhs_info = lhs_info; gemm_kernel_info.rhs_info = rhs_info; gemm_kernel_info.a_offset = _a_offset; gemm_kernel_info.b_offset = _b_offset; // If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE) { // Configure offset contribution kernel const size_t num_filters = (gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1; _gemm_output_stage_multipliers.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); _gemm_output_stage_shifts.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); GEMMLowpOutputStageInfo gemmlowp_output_stage = gemm_info.gemmlowp_output_stage(); gemmlowp_output_stage.output_data_type = _matrix_a->info()->data_type(); gemm_kernel_info.output_stage = gemmlowp_output_stage; if(_is_gemm_reshaped && gemmlowp_output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT) { // Configure and tune matrix multiply kernel with fused output stage _mm_reshaped_only_rhs_kernel.configure(compile_context, _matrix_a, matrix_b, output, gemm_kernel_info, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, &_gemm_output_stage_multipliers, &_gemm_output_stage_shifts); } else { _run_output_stage = true; _memory_group.manage(&_mm_result_s32); if(_is_gemm_reshaped) { _mm_reshaped_only_rhs_kernel.configure(compile_context, _matrix_a, matrix_b, &_mm_result_s32, gemm_kernel_info); } else { // Pick up the GEMM configuration std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8); // Configure matrix multiply kernel _mm_native_kernel.configure(compile_context, _matrix_a, matrix_b, &_mm_result_s32, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d)); _offset_contribution_output_stage_kernel.configure(compile_context, &_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, output, a->info()->dimension(0), _a_offset, _b_offset, gemmlowp_output_stage, &_gemm_output_stage_multipliers, &_gemm_output_stage_shifts); _mm_result_s32.allocator()->allocate(); } } _gemm_output_stage_multipliers.allocator()->allocate(); _gemm_output_stage_shifts.allocator()->allocate(); // Compute GEMM output multipliers and shifts for output stage _gemm_output_stage_multipliers.map(); _gemm_output_stage_shifts.map(); std::memcpy(_gemm_output_stage_multipliers.ptr_to_element(Coordinates(0)), gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.data(), num_filters * sizeof(int32_t)); std::memcpy(_gemm_output_stage_shifts.ptr_to_element(Coordinates(0)), gemm_info.gemmlowp_output_stage().gemmlowp_shifts.data(), num_filters * sizeof(int32_t)); _gemm_output_stage_multipliers.unmap(); _gemm_output_stage_shifts.unmap(); } else { _run_offset_contribution = true; if(_is_gemm_reshaped) { // Configure and tune matrix multiply kernel _mm_reshaped_only_rhs_kernel.configure(compile_context, _matrix_a, matrix_b, output, gemm_kernel_info); } else { // Pick up the GEMM configuration std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8); // Configure matrix multiply kernel _mm_native_kernel.configure(compile_context, _matrix_a, matrix_b, output, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d)); } // Configure offset contribution kernel _offset_contribution_kernel.configure(compile_context, output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, a->info()->dimension(0), _a_offset, _b_offset); } // Allocate tensors if(_is_gemm_reshaped) { if(!_reshape_b_only_on_first_run) { _tmp_b.allocator()->allocate(); } } if(_a_offset != 0 && !_reshape_b_only_on_first_run) { _vector_sum_col.allocator()->allocate(); } if(_b_offset != 0) { _vector_sum_row.allocator()->allocate(); } } Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(a->data_type() == DataType::QASYMM8 && b->data_type() == DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON(a->data_type() == DataType::QASYMM8_SIGNED && b->data_type() == DataType::QASYMM8); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); int32_t a_offset = a->quantization_info().uniform().offset; int32_t b_offset = b->quantization_info().uniform().offset; const ITensorInfo *matrix_a_info = a; TensorInfo tmp_b_info{}; GEMMRHSMatrixInfo rhs_info; GEMMLHSMatrixInfo lhs_info; // Get the GPU target const GPUTarget gpu_target = CLScheduler::get().target(); bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d(); const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1); const unsigned int n = b->dimension(0); const unsigned int k = a->dimension(0); const unsigned int batch_size = reinterpret_input_as_3d ? a->dimension(3) : a->dimension(2); const int depth_output_gemm3d = gemm_info.depth_output_gemm3d(); bool reshape_matrix_b = is_gemm_reshaped(m, n, k, a->data_type(), gemm_info.reshape_b_only_on_first_run()); const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d); bool convert_to_qasymm8 = is_data_type_quantized_per_channel(b->data_type()) && is_data_type_quantized_symmetric(b->data_type()) && is_data_type_quantized_asymmetric(a->data_type()); TensorInfo weights_info(*b); if(convert_to_qasymm8) { b_offset = -128; weights_info.set_data_type(DataType::QASYMM8); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthConvertLayerKernel::validate(b, &weights_info, ConvertPolicy::WRAP, 0)); } const ITensorInfo *matrix_b_info = &weights_info; if(reshape_matrix_b) { matrix_b_info = &tmp_b_info; // Pick up the GEMM configuration std::tie(lhs_info, rhs_info) = CLGEMMReshapedOnlyRHSKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8); // Validate reshape RHS kernel auto_init_if_empty(tmp_b_info, weights_info.clone()->set_tensor_shape(compute_rhs_reshaped_shape(weights_info, rhs_info))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(&weights_info, &tmp_b_info, rhs_info)); } TensorInfo info_vector_sum_col{}; TensorInfo info_vector_sum_row{}; const GEMMLowpReductionKernelInfo reduction_info; // Validate matrix B reduction kernel only if _a_offset is not equal to 0 if(a_offset != 0) { info_vector_sum_col = TensorInfo(compute_reductionA_shape(weights_info), 1, DataType::S32); // Configure Matrix B reduction kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixBReductionKernel::validate(&weights_info, &info_vector_sum_col, reduction_info)); } // Validate Matrix A reduction kernel only if _b_offset is not equal to 0 if(b_offset != 0) { info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32); // Configure matrix A reduction kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row, reduction_info)); } GEMMKernelInfo gemm_kernel_info; gemm_kernel_info.m = m; gemm_kernel_info.n = n; gemm_kernel_info.k = k; gemm_kernel_info.depth_output_gemm3d = depth_output_gemm3d; gemm_kernel_info.reinterpret_input_as_3d = reinterpret_input_as_3d; gemm_kernel_info.lhs_info = lhs_info; gemm_kernel_info.rhs_info = rhs_info; gemm_kernel_info.a_offset = a_offset; gemm_kernel_info.b_offset = b_offset; if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE) { const size_t num_filters = (gemm_info.gemmlowp_output_stage().is_quantized_per_channel) ? gemm_info.gemmlowp_output_stage().gemmlowp_multipliers.size() : 1; const TensorInfo gemm_output_stage_multipliers_shifts_info(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); GEMMLowpOutputStageInfo gemmlowp_output_stage = gemm_info.gemmlowp_output_stage(); gemmlowp_output_stage.output_data_type = a->data_type(); gemm_kernel_info.output_stage = gemmlowp_output_stage; if(reshape_matrix_b && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT) { ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::validate(matrix_a_info, matrix_b_info, output, gemm_kernel_info, a_offset == 0 ? nullptr : &info_vector_sum_col, b_offset == 0 ? nullptr : &info_vector_sum_row, c, &gemm_output_stage_multipliers_shifts_info, &gemm_output_stage_multipliers_shifts_info)); } else { TensorInfo mm_result_s32_info{}; if(reshape_matrix_b) { // Output tensor auto inizialitation if not yet initialized auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, reshape_info)).set_data_type(DataType::S32)); // Validate matrix multiply ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, gemm_kernel_info)); } else { // Output tensor auto inizialitation if not yet initialized auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, false, reshape_info)).set_data_type(DataType::S32)); // Pick up the GEMM configuration std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8); // Validate matrix multiply ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyNativeKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, lhs_info, rhs_info, reshape_info)); } // Validate offset contribution kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info, a_offset == 0 ? nullptr : &info_vector_sum_col, b_offset == 0 ? nullptr : &info_vector_sum_row, c, output, a_offset, b_offset, gemmlowp_output_stage, &gemm_output_stage_multipliers_shifts_info, &gemm_output_stage_multipliers_shifts_info)); } } else { if(reshape_matrix_b) { // Validate matrix multiply ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel::validate(matrix_a_info, matrix_b_info, output, gemm_kernel_info)); } else { // Pick up the GEMM configuration std::tie(lhs_info, rhs_info) = CLGEMMNativeKernelConfigurationFactory::create(gpu_target)->configure(m, n, k, batch_size, DataType::QASYMM8); // Validate matrix multiply ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyNativeKernel::validate(matrix_a_info, matrix_b_info, output, lhs_info, rhs_info, reshape_info)); } if(output->total_size() != 0) { // Validate offset contribution kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output, a_offset == 0 ? nullptr : &info_vector_sum_col, b_offset == 0 ? nullptr : &info_vector_sum_row, c, a_offset, b_offset)); } } return Status{}; } void CLGEMMLowpMatrixMultiplyCore::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(_is_gemm_reshaped) { if(!_reshape_b_only_on_first_run) { // Run reshape matrix B CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false); } } // Run matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0 && !_reshape_b_only_on_first_run) { CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false); } // Run matrix A reduction kernel only if _b_offset is not equal to 0 if(_b_offset != 0) { CLScheduler::get().enqueue(_mtx_a_reduction_kernel, false); } // Run matrix multiply if(_is_gemm_reshaped) { CLScheduler::get().enqueue(_mm_reshaped_only_rhs_kernel, false); } else { CLScheduler::get().enqueue(_mm_native_kernel, false); } if(_run_output_stage) { // Run offset contribution/output stage kernel CLScheduler::get().enqueue(_offset_contribution_output_stage_kernel, true); } if(_run_offset_contribution) { // Run offset contribution kernel CLScheduler::get().enqueue(_offset_contribution_kernel, true); } } void CLGEMMLowpMatrixMultiplyCore::prepare() { if(!_is_prepared) { if(_convert_to_qasymm8) { _qasymm8_weights.allocator()->allocate(); CLScheduler::get().enqueue(_weights_to_qasymm8, false); } if(_is_gemm_reshaped && _reshape_b_only_on_first_run) { ARM_COMPUTE_ERROR_ON(!_original_b->is_used()); // Run reshape kernel and mark original weights tensor as unused _tmp_b.allocator()->allocate(); CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false); _original_b->mark_as_unused(); } // Run matrix B reduction kernel only if _a_offset is not equal to 0 if(_a_offset != 0 && _reshape_b_only_on_first_run) { _vector_sum_col.allocator()->allocate(); CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false); } CLScheduler::get().queue().finish(); _is_prepared = true; } } } // namespace arm_compute