/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include #include #include using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights() : _weights_reshape_kernel() { } void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output); ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info())); const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type()); const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr; _weights_reshape_kernel.configure(weights, biases_to_use, output); output->info()->set_quantization_info(weights->info()->quantization_info()); } Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type())); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output); CLWeightsReshapeKernel::validate(weights, biases, output); } return Status{}; } void CLConvolutionLayerReshapeWeights::run() { CLScheduler::get().enqueue(_weights_reshape_kernel); } CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr memory_manager) : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _col2im_kernel(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _tmp_output(), _is_quantized(false), _is_first_run(true) { } void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights); ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), output->info())); if(_is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->info()->quantization_info(); const QuantizationInfo weights_quantization_info = weights->info()->quantization_info(); input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); _mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)); // Revert back QuantizatioInfo as input and weights could be used in other convolution layers input->info()->set_quantization_info(input_quantization_info); weights->info()->set_quantization_info(weights_quantization_info); } else { // Configure matrix multiply function _mm_gemm.configure(input, weights, nullptr, output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)); } } Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output) { const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */); if(is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->quantization_info(); const QuantizationInfo weights_quantization_info = weights->quantization_info(); std::unique_ptr input_qa = input->clone(); std::unique_ptr weights_qa = weights->clone(); input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); // Perform validation step on GEMMLowp CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), output, gemm_info); } else { // Perform validation step on Matrix multiply function CLGEMM::validate(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info); } return Status{}; } void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), conv_info, weights_info, dilation)); _is_first_run = true; _original_weights = weights; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); const DataType dt = input->info()->data_type(); // Set the GPU target for im2col and col2im _im2col_kernel.set_target(CLScheduler::get().target()); _col2im_kernel.set_target(CLScheduler::get().target()); const bool append_bias = (biases != nullptr) && (!_is_quantized); const unsigned bias_element = (append_bias) ? 1 : 0; const ICLTensor *biases_to_use = (append_bias) ? biases : nullptr; // Get parameters from conv_info unsigned int stride_x = 0; unsigned int stride_y = 0; std::tie(stride_x, stride_y) = conv_info.stride(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; const unsigned int kernel_width = weights->info()->dimension(0); const unsigned int kernel_height = weights->info()->dimension(1); std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height, conv_info, dilation); unsigned int mat_weights_cols = weights->info()->dimension(3); unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element; // _weights_reshaped will be auto configured in the kernel. // Just append biases and do not transpose 1xW as it will be reshaped in CLGEMM _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped); weights = &_weights_reshaped; // Create tensor to store im2col reshaped inputs const unsigned int mat_input_cols = mat_weights_rows; const unsigned int mat_input_rows = conv_w * conv_h; TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, mat_input_cols); shape_im2col.set(1, mat_input_rows); shape_im2col.set(2, 1); // FIXME: input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->info()->fixed_point_position()); im2col_reshaped_info.set_quantization_info(input->info()->quantization_info()); _im2col_output.allocator()->init(im2col_reshaped_info); _memory_group.manage(&_im2col_output); // Create GEMM output tensor TensorShape shape_gemm = _im2col_output.info()->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, mat_input_rows); const DataType gemm_data_type = _is_quantized ? DataType::S32 : dt; // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input. // FIXME: input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position()); info_gemm.set_quantization_info(output->info()->quantization_info()); _gemm_output.allocator()->init(info_gemm); _memory_group.manage(&_gemm_output); // Configure im2col _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation); // Configure GEMM configure_mm(&_im2col_output, weights, &_gemm_output); _im2col_output.allocator()->allocate(); // Configure output stage for quantized case if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _memory_group.manage(&_tmp_output); _gemmlowp_output_stage.configure(&_gemm_output, biases, &_tmp_output, output_multiplier, output_shift, output_quant_info.offset); } // Configure Col2Im _col2im_kernel.configure(_is_quantized ? &_tmp_output : &_gemm_output, output, std::make_pair(conv_w, conv_h)); if(_is_quantized) { _tmp_output.allocator()->allocate(); } _gemm_output.allocator()->allocate(); ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one"); // Allocate intermediate tensor _weights_reshaped.allocator()->allocate(); ARM_COMPUTE_UNUSED(weights_info); } Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != input->dimension(2)); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool append_bias = (biases != nullptr) && (!is_quantized); const unsigned bias_element = (append_bias) ? 1 : 0; const DataType dt = input->data_type(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; const unsigned int kernel_width = weights->dimension(0); const unsigned int kernel_height = weights->dimension(1); std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(0), input->dimension(1), kernel_width, kernel_height, conv_info, dilation); unsigned int mat_weights_cols = weights->dimension(3); unsigned int mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + bias_element; CLConvolutionLayerReshapeWeights::validate(weights, biases, nullptr); // Create tensor info for im2col reshaped inputs const unsigned int mat_input_cols = mat_weights_rows; const unsigned int mat_input_rows = conv_w * conv_h; TensorShape shape_im2col = input->tensor_shape(); shape_im2col.set(0, mat_input_cols); shape_im2col.set(1, mat_input_rows); shape_im2col.set(2, 1); TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->fixed_point_position()); im2col_reshaped_info.set_quantization_info(input->quantization_info()); CLIm2ColKernel::validate(input, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation); // Create GEMM output tensor TensorShape shape_gemm = im2col_reshaped_info.tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, mat_input_rows); const DataType gemm_data_type = is_quantized ? DataType::S32 : dt; // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input. TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->fixed_point_position()); info_gemm.set_quantization_info(output->quantization_info()); validate_mm(&im2col_reshaped_info, weights, &info_gemm); TensorInfo tmp_info(input->tensor_shape(), 1, DataType::QASYMM8, input->fixed_point_position()); if(is_quantized) { float multiplier = input->quantization_info().scale * weights->quantization_info().scale / output->quantization_info().scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); // Validate output stage for quantized case CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&info_gemm, biases, &tmp_info, output->quantization_info().offset); } // Validate Col2Im CLCol2ImKernel::validate(is_quantized ? &tmp_info : &info_gemm, output, std::make_pair(conv_w, conv_h)); if(biases != nullptr) { if(is_quantized) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } return Status{}; } void CLGEMMConvolutionLayer::run() { // Run weights reshaping (Runs once for every configure) if(_is_first_run) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); _reshape_weights.run(); _is_first_run = false; // Mark original weights tensor as unused _original_weights->mark_as_unused(); } _memory_group.acquire(); // Run im2col CLScheduler::get().enqueue(_im2col_kernel); // Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions if(_is_quantized) { // Run gemmlowp _mm_gemmlowp.run(); // Run output stage _gemmlowp_output_stage.run(); } else { // Run gemm _mm_gemm.run(); } // Reshape output matrix CLScheduler::get().enqueue(_col2im_kernel, false); _memory_group.release(); }