/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include #include #include using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights() : _weights_reshape_kernel() { } void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups) { // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output); ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), num_groups)); const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type()); const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr; _weights_reshape_kernel.configure(weights, biases_to_use, output, num_groups); output->info()->set_quantization_info(weights->info()->quantization_info()); } Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); if(biases != nullptr) { const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES); ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type())); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output); CLWeightsReshapeKernel::validate(weights, biases, output, num_groups); } return Status{}; } void CLConvolutionLayerReshapeWeights::run() { CLScheduler::get().enqueue(_weights_reshape_kernel); } CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr memory_manager) : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(), _add_bias_kernel(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _data_layout(DataLayout::NCHW), _append_bias(false), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_activationlayer_enabled(false), _is_prepared(false), _run_addition(true) { } void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights); ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), gemmlowp_output_stage, gemm_3d_depth, _skip_im2col, _run_addition)); const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, false, gemmlowp_output_stage); if(_is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->info()->quantization_info(); const QuantizationInfo weights_quantization_info = weights->info()->quantization_info(); input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); _mm_gemmlowp.configure(input, weights, biases, output, gemm_info); // Revert back QuantizatioInfo as input and weights could be used in other convolution layers input->info()->set_quantization_info(input_quantization_info); weights->info()->set_quantization_info(weights_quantization_info); } else { // Bias does not need to be added in GEMM if im2col is being used or the Matrix Addition kernel needs to be run const bool skip_bias_in_gemm = _run_addition || !_skip_im2col; // Configure matrix multiply function _mm_gemm.configure(input, weights, (skip_bias_in_gemm) ? nullptr : biases, output, 1.0f, 1.0f, gemm_info); } } Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, bool skip_im2col, bool run_addition) { const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, false, gemmlowp_output_stage); if(is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->quantization_info(); const QuantizationInfo weights_quantization_info = weights->quantization_info(); std::unique_ptr input_qa = input->clone(); std::unique_ptr weights_qa = weights->clone(); input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); // Perform validation step on GEMMLowp return CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, output, gemm_info); } else { // Bias does not need to be added in GEMM if im2col is being used or the Matrix Addition kernel needs to be run const bool skip_bias_in_gemm = run_addition || !skip_im2col; // Perform validation step on Matrix multiply function return CLGEMM::validate(input, weights, (skip_bias_in_gemm) ? nullptr : biases, output, 1.0f, 1.0f, gemm_info); } } void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), conv_info, weights_info, dilation, act_info, num_groups)); const DataType data_type = input->info()->data_type(); const DataLayout data_layout = input->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); const unsigned int kernel_width = weights->info()->dimension(idx_width); const unsigned int kernel_height = weights->info()->dimension(idx_height); _is_prepared = weights_info.retain_internal_weights(); _original_weights = weights; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _data_layout = data_layout; _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); _skip_col2im = data_layout == DataLayout::NHWC; _append_bias = (biases != nullptr) && (!_is_quantized); _is_activationlayer_enabled = act_info.enabled(); // In case of F16, fused bias will be used in GEMM _run_addition = (_skip_im2col) && (_append_bias) && (data_type != DataType::F16); // Set the GPU target for im2col and col2im _im2col_kernel.set_target(CLScheduler::get().target()); _col2im_kernel.set_target(CLScheduler::get().target()); const ICLTensor *gemm_input_to_use = input; ICLTensor *gemm_output_to_use = output; const ICLTensor *biases_to_use = (_append_bias && !_skip_im2col) ? biases : nullptr; // Get parameters from conv_info unsigned int stride_x = 0; unsigned int stride_y = 0; std::tie(stride_x, stride_y) = conv_info.stride(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(idx_width), input->info()->dimension(idx_height), kernel_width, kernel_height, conv_info, dilation); unsigned int mat_weights_cols = weights->info()->dimension(idx_kernels) / num_groups; // _weights_reshaped will be auto configured in the kernel. // Just append biases and do not transpose 1xW as it will be reshaped in CLGEMM _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, num_groups); // Create tensor to store im2col reshaped inputs if(!_skip_im2col) { _memory_group.manage(&_im2col_output); // Configure and tune im2col. im2col output shape is auto-initialized _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, _append_bias, dilation, num_groups); // Set quantization info _im2col_output.info()->set_quantization_info(input->info()->quantization_info()); CLScheduler::get().tune_kernel_static(_im2col_kernel); // Update GEMM input gemm_input_to_use = &_im2col_output; } else if(_append_bias) { // Configure add bias kernel _add_bias_kernel.configure(ArithmeticOperation::ADD, output, biases, output, ConvertPolicy::SATURATE); } // Create GEMM output tensor if(!_skip_col2im) { TensorShape shape_gemm; // If we cannot skip col2im it means we run im2col as well shape_gemm = _im2col_output.info()->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, conv_w * conv_h); // TODO(COMPMID-2078): input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo info_gemm(shape_gemm, 1, data_type); info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout()); _gemm_output.allocator()->init(info_gemm); _memory_group.manage(&_gemm_output); // Update GEMM output gemm_output_to_use = &_gemm_output; } GEMMLowpOutputStageInfo gemmlowp_output_stage; gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; gemmlowp_output_stage.gemmlowp_offset = 0; gemmlowp_output_stage.gemmlowp_multiplier = 0; gemmlowp_output_stage.gemmlowp_shift = 0; // Configure output stage for quantized case if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); const float multiplier = (input->info()->quantization_info().scale * weights->info()->quantization_info().scale) / output_quant_info.scale; int output_multiplier = 0; int output_shift = 0; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); int min_activation = 0; int max_activation = 0; const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU }; if(_is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0) { const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP); const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP); min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int; max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int; // If the activation layer is RELU, BOUNDED_RELU or LU_BOUNDED_RELU, we can use the GEMMLowp output stage to perform this operation _is_activationlayer_enabled = false; } // Set the GEMMLowp output stage info gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset; gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier; gemmlowp_output_stage.gemmlowp_shift = output_shift; gemmlowp_output_stage.gemmlowp_min_bound = min_activation; gemmlowp_output_stage.gemmlowp_max_bound = max_activation; } // Configure and tune GEMM // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0; configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth); if(!_skip_im2col) { _im2col_output.allocator()->allocate(); } if(!_skip_col2im) { // Configure and tune Col2Im _col2im_kernel.configure(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups); CLScheduler::get().tune_kernel_static(_col2im_kernel); } if(!_skip_col2im) { _gemm_output.allocator()->allocate(); } ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h), "Output shape does not match the expected one"); if(_is_activationlayer_enabled) { _activationlayer_function.configure(output, nullptr, act_info); } ARM_COMPUTE_UNUSED(weights_info); } Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights); ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_type() == DataType::QASYMM8), "Grouping (num_groups != 1) is not supported with QASYMM8"); ARM_COMPUTE_RETURN_ERROR_ON(((input->dimension(2) / weights->dimension(2)) != num_groups) && (input->data_layout() == DataLayout::NCHW)); const DataLayout data_layout = input->data_layout(); const DataType data_type = input->data_type(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); const unsigned int kernel_width = weights->dimension(idx_width); const unsigned int kernel_height = weights->dimension(idx_height); TensorInfo im2col_reshaped_info, info_gemm, weights_reshaped_info; const ITensorInfo *gemm_input_to_use = input; const ITensorInfo *gemm_output_to_use = output; const ITensorInfo *weights_to_use = weights; const bool is_quantized = is_data_type_quantized_asymmetric(data_type); const bool append_bias = (biases != nullptr) && (!is_quantized); const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); const bool skip_col2im = data_layout == DataLayout::NHWC; bool is_activationlayer_enabled = act_info.enabled(); // In case of F16, fused bias will be used in GEMM const bool run_addition = (skip_im2col) && (append_bias) && (data_type != DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * num_groups) != input->dimension(idx_channel)); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); // Validate biases if(biases != nullptr) { if(is_quantized) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); } ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } if(act_info.enabled()) { ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a()); } // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(idx_width), input->dimension(idx_height), kernel_width, kernel_height, conv_info, dilation); unsigned int mat_weights_cols = weights->dimension(idx_kernels) / num_groups; // Output tensor auto inizialitation if not yet initialized ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayerReshapeWeights::validate(weights, is_quantized ? nullptr : biases, nullptr, num_groups)); weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, (append_bias && !skip_im2col), num_groups), 1, data_type); weights_to_use = &weights_reshaped_info; if(!skip_im2col) { const Size2D kernel_dims(kernel_width, kernel_height); // Output tensor auto initialization if not yet initialized TensorShape expected_output_shape = compute_im2col_conv_shape(input, kernel_dims, conv_info, append_bias, dilation, num_groups == 1, num_groups); auto_init_if_empty(im2col_reshaped_info, input->clone()->set_tensor_shape(expected_output_shape)); ARM_COMPUTE_RETURN_ON_ERROR(CLIm2ColKernel::validate(input, &im2col_reshaped_info, kernel_dims, conv_info, append_bias, dilation, num_groups)); gemm_input_to_use = &im2col_reshaped_info; } else if(run_addition) { // Validate add bias kernel ARM_COMPUTE_RETURN_ON_ERROR(CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation::ADD, output, biases, output, ConvertPolicy::SATURATE)); } // Create GEMM output tensor if(!skip_col2im) { TensorShape shape_gemm; shape_gemm = gemm_input_to_use->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, conv_w * conv_h); info_gemm = TensorInfo(shape_gemm, 1, data_type); info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout()); gemm_output_to_use = &info_gemm; } GEMMLowpOutputStageInfo gemmlowp_output_stage; gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; gemmlowp_output_stage.gemmlowp_offset = 0; gemmlowp_output_stage.gemmlowp_multiplier = 0; gemmlowp_output_stage.gemmlowp_shift = 0; if(is_quantized) { const QuantizationInfo output_quant_info = (output->total_size() == 0) ? input->quantization_info() : output->quantization_info(); const float multiplier = (input->quantization_info().scale * weights->quantization_info().scale) / output_quant_info.scale; int output_multiplier = 0; int output_shift = 0; ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift)); int min_activation = 0; int max_activation = 0; const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU }; if(is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0) { const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP); const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP); min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int; max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int; // If the activation layer is RELU, BOUNDED_RELU or LU_BOUNDED_RELU, we can use the GEMMLowp output stage to perform this operation is_activationlayer_enabled = false; } // Set the GEMMLowp output stage info gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset; gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier; gemmlowp_output_stage.gemmlowp_shift = output_shift; gemmlowp_output_stage.gemmlowp_min_bound = min_activation; gemmlowp_output_stage.gemmlowp_max_bound = max_activation; } // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0; ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, skip_im2col, run_addition)); // Validate Col2Im if(!skip_col2im) { ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(gemm_output_to_use, output, Size2D(conv_w, conv_h), num_groups)); } //Validate Activation Layer if(is_activationlayer_enabled) { ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info)); } return Status{}; } void CLGEMMConvolutionLayer::run() { prepare(); _memory_group.acquire(); // Run im2col if(!_skip_im2col) { CLScheduler::get().enqueue(_im2col_kernel); } // Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions if(_is_quantized) { // Run gemmlowp _mm_gemmlowp.run(); } else { // Run gemm _mm_gemm.run(); } if(_run_addition) { CLScheduler::get().enqueue(_add_bias_kernel); } // Reshape output matrix if(!_skip_col2im) { CLScheduler::get().enqueue(_col2im_kernel, false); } //Run Activation Layer if enabled if(_is_activationlayer_enabled) { _activationlayer_function.run(); } _memory_group.release(); } void CLGEMMConvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights reshaping and mark original weights tensor as unused _weights_reshaped.allocator()->allocate(); _reshape_weights.run(); _original_weights->mark_as_unused(); // Prepare GEMM _is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare(); if(!_weights_reshaped.is_used()) { _weights_reshaped.allocator()->free(); } CLScheduler::get().queue().finish(); _is_prepared = true; } }