/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLGEMM.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/GPUTarget.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/ITensorAllocator.h" using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; namespace { inline bool is_interleaved_transposed(int m, int n, int k, DataType data_type, bool reshape_b_only_on_first_run, GPUTarget gpu_target) { bool flag = true; if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72)) { // COMPMID-852 if(k > 256 && m > 4 && is_data_type_float(data_type) && reshape_b_only_on_first_run) { constexpr float alpha = 3.2f; constexpr float fact0 = 1.51f; constexpr float fact1 = 1.66f; constexpr float ops = 12.0f; const float scale = k > 1024 ? 1.07f : 1.0f; flag = alpha + ((n * fact0) / ops) < ((fact1 * n * scale) / ops); } else { flag = false; } } else { // We reshape the matrices only if we do not have the vector-by-matrix case and we reshape the matrix B only once flag = m != 1 && reshape_b_only_on_first_run; } return flag; } } // namespace CLGEMM::CLGEMM(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _ma_kernel(), _tmp_a(), _tmp_b(), _original_b(nullptr), _is_interleaved_transposed(false), _run_addition(false), _reshape_b_only_on_first_run(false), _is_prepared(false) { } void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), alpha, beta, gemm_info)); // Store original b matrix _original_b = b; // Check if we need to reshape the matrix B only on the first run _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); _is_prepared = false; const ICLTensor *matrix_a = a; const ICLTensor *matrix_b = b; // Get the GPU target const GPUTarget gpu_target = CLScheduler::get().target(); // Set the target for the kernels _interleave_kernel.set_target(gpu_target); _mm_kernel.set_target(gpu_target); // Arguments used by GEMMReshapeInfo // If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo // in order to know how the matrices have been reshaped const int m = a->info()->dimension(1); const int n = b->info()->dimension(0); const int k = a->info()->dimension(0); const int depth_output_gemm3d = gemm_info.depth_output_gemm3d(); int mult_transpose1xW_width = 1; int mult_interleave4x4_height = 1; if(get_arch_from_target(gpu_target) == GPUTarget::BIFROST) { mult_transpose1xW_width = 4; mult_interleave4x4_height = 2; } // Check if we need to reshape the matrix A and matrix B _is_interleaved_transposed = is_interleaved_transposed(m, n, k, a->info()->data_type(), _reshape_b_only_on_first_run, gpu_target); if(_is_interleaved_transposed) { matrix_a = &_tmp_a; matrix_b = &_tmp_b; // Manage intermediate buffers _memory_group.manage(&_tmp_a); if(!_reshape_b_only_on_first_run) { _memory_group.manage(&_tmp_b); } // _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel // Configure interleave kernel _interleave_kernel.configure(a, &_tmp_a, mult_interleave4x4_height); // Configure transpose kernel _transpose_kernel.configure(b, &_tmp_b, mult_transpose1xW_width); } // Configure and tune matrix multiply kernel _mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, depth_output_gemm3d)); CLScheduler::get().tune_kernel_static(_mm_kernel); if(_is_interleaved_transposed) { // Allocate intermediate tensors _tmp_a.allocator()->allocate(); if(!_reshape_b_only_on_first_run) { _tmp_b.allocator()->allocate(); } } // Configure matrix addition kernel if(beta != 0 && c != nullptr) { _ma_kernel.configure(c, output, beta); _run_addition = true; } } Status CLGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_UNUSED(alpha); // Check if we need to reshape the matrix B only on the first run const bool reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); const ITensorInfo *matrix_a_info = a; const ITensorInfo *matrix_b_info = b; TensorInfo tmp_a_info{}; TensorInfo tmp_b_info{}; TensorInfo tmp_output_info = *output->clone(); // Get the GPU target const GPUTarget gpu_target = CLScheduler::get().target(); // Arguments used by GEMMReshapeInfo // If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo // in order to know how the matrices have been reshaped const int m = a->dimension(1); const int n = b->dimension(0); const int k = a->dimension(0); int mult_transpose1xW_width = 1; int mult_interleave4x4_height = 1; if(get_arch_from_target(gpu_target) == GPUTarget::BIFROST) { mult_transpose1xW_width = 4; mult_interleave4x4_height = 2; } const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d()); // Check if we need to reshape the matrix A and matrix B const bool run_interleave_transpose = is_interleaved_transposed(m, n, k, a->data_type(), reshape_b_only_on_first_run, gpu_target); if(run_interleave_transpose) { matrix_a_info = &tmp_a_info; matrix_b_info = &tmp_b_info; // Validate interleave kernel auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMInterleave4x4Kernel::validate(a, &tmp_a_info, mult_interleave4x4_height)); // Validate transpose kernel auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMTranspose1xWKernel::validate(b, &tmp_b_info, mult_transpose1xW_width)); } // Validate matrix multiply auto_init_if_empty(tmp_output_info, matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info))); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info, gpu_target)); if(beta != 0 && c != nullptr) { // Validate matrix addition kernel ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixAdditionKernel::validate(c, &tmp_output_info, beta)); } return Status{}; } void CLGEMM::run() { prepare(); _memory_group.acquire(); if(_is_interleaved_transposed) { // Run interleave kernel CLScheduler::get().enqueue(_interleave_kernel, false); if(!_reshape_b_only_on_first_run) { // Run transpose kernel CLScheduler::get().enqueue(_transpose_kernel, false); } } // Run matrix multiply kernel CLScheduler::get().enqueue(_mm_kernel, !_run_addition); // Run matrix addition kernel if(_run_addition) { CLScheduler::get().enqueue(_ma_kernel); } _memory_group.release(); } void CLGEMM::prepare() { if(!_is_prepared) { if(_is_interleaved_transposed && _reshape_b_only_on_first_run) { // Run transpose kernel _tmp_b.allocator()->allocate(); CLScheduler::get().enqueue(_transpose_kernel, false); _original_b->mark_as_unused(); } CLScheduler::get().queue().finish(); _is_prepared = true; } }