/* * Copyright (c) 2017, 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLGEMM.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h" #include "arm_compute/core/CL/kernels/CLGEMMMatrixAdditionKernel.h" #include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h" #include "arm_compute/core/CL/kernels/CLGEMMTranspose1xWKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/ITensorAllocator.h" using namespace arm_compute; CLGEMM::CLGEMM(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _ma_kernel(), _tmp_a(), _tmp_b(), _is_interleaved_transposed(false), _run_addition(false), _is_first_run(true), _reshape_b_only_on_first_run(false) { } void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, float alpha, float beta, const GEMMInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output); ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported"); ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported"); if(c != nullptr) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, c); ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A"); ARM_COMPUTE_ERROR_ON_MSG(b->info()->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix B"); ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(0) != output->info()->dimension(0), "The C matrix must have the same number of rows as the output matrix"); ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(1) != output->info()->dimension(1), "The C matrix must have the same number of columns as the output matrix"); } ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(0) != b->info()->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B"); // If the input tensor has less than 16 rows, we run a special version of GEMM without reshaping the input tensors // For Bifrost architectures we do not reshape the input matrices _is_interleaved_transposed = (a->info()->dimension(1) > 16 && CLScheduler::get().target() != GPUTarget::BIFROST); // Check if we need to reshape the matrix B only on the first run _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run(); const ICLTensor *matrix_a = a; const ICLTensor *matrix_b = b; // Set the target for the matrix multiply kernel _mm_kernel.set_target(CLScheduler::get().target()); if(_is_interleaved_transposed) { matrix_a = &_tmp_a; matrix_b = &_tmp_b; // _tmp_a and _tmp_n will be auto configured in _interleave_kernel and in _transpose_kernel // Configure interleave kernel _interleave_kernel.configure(a, &_tmp_a); // Configure transpose kernel _transpose_kernel.configure(b, &_tmp_b); // Manage intermediate buffers _memory_group.manage(&_tmp_a); _memory_group.manage(&_tmp_b); } _mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed); if(_is_interleaved_transposed) { // Allocate intermediate tensors _tmp_a.allocator()->allocate(); _tmp_b.allocator()->allocate(); } // Configure matrix addition kernel if(beta != 0 && c != nullptr) { _ma_kernel.configure(c, output, beta); _run_addition = true; } } void CLGEMM::run() { _memory_group.acquire(); if(_is_interleaved_transposed) { // Run interleave kernel CLScheduler::get().enqueue(_interleave_kernel, false); if(_is_first_run) { // Run transpose kernel CLScheduler::get().enqueue(_transpose_kernel, false); _is_first_run = false; } else if(!_reshape_b_only_on_first_run) { // Run transpose kernel CLScheduler::get().enqueue(_transpose_kernel, false); } } // Run matrix multiply kernel CLScheduler::get().enqueue(_mm_kernel, !_run_addition); // Run matrix addition kernel if(_run_addition) { CLScheduler::get().enqueue(_ma_kernel); } _memory_group.release(); }