/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLDirectDeconvolutionLayer.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include #include namespace arm_compute { using namespace arm_compute::misc::shape_calculator; CLDirectDeconvolutionLayer::CLDirectDeconvolutionLayer(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _scale_f(), _conv_f(), _flip_weights(), _scaled_output(), _original_weights(nullptr), _weights_flipped(), _flip_axis(), _is_prepared(false) { } Status CLDirectDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, ITensorInfo *output, const PadStrideInfo &info, const WeightsInfo &weights_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights); const DataLayout data_layout = input->data_layout(); const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != weights->dimension(idx_h)); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) < 1); ARM_COMPUTE_RETURN_ERROR_ON(!info.padding_is_symmetric()); const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h), info.pad().first, info.pad().second, stride_x, stride_y); const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, weights); if(bias != nullptr) { if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, bias); } ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_w) != output_shape[idx_w], "Output's width is invalid."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_h) != output_shape[idx_h], "Output's height is invalid."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_c) != output_shape[idx_c], "Output's depth is invalid."); unsigned int padx = 0; unsigned int pady = 0; const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, 0, 0, out_dims, padx, pady); TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape).set_data_layout(data_layout)); const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionLayerUpsample::validate(input, &scale_out_info, BorderSize(), info)); ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, weights_info)); return Status{}; } void CLDirectDeconvolutionLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info, const WeightsInfo &weights_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); const unsigned int stride_x = info.stride().first; const unsigned int stride_y = info.stride().second; const DataLayout data_layout = input->info()->data_layout(); const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); _original_weights = weights; _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32)); _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout)); _flip_weights.configure(weights, &_weights_flipped, &_flip_axis); auto out_dims = deconvolution_output_dimensions(input->info()->dimension(idx_w), input->info()->dimension(idx_h), weights->info()->dimension(idx_w), weights->info()->dimension(idx_h), info.pad().first, info.pad().second, stride_x, stride_y); const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info()); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_layout(data_layout)); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(CLDirectDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info)); _is_prepared = weights_info.retain_internal_weights(); _memory_group.manage(&_scaled_output); // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape unsigned int padx = 0; unsigned int pady = 0; const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, 0, 0, out_dims, padx, pady); TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info()); scale_out_info.set_data_layout(data_layout); _scaled_output.allocator()->init(scale_out_info); // configure scale function const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2); _scale_f.configure(input, &_scaled_output, BorderSize(), upsample_info); // Setup the function to convolve the upscaled output const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL); _conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info, weights_info); _scaled_output.allocator()->allocate(); // Setup flip axis data _flip_axis.allocator()->allocate(); _flip_axis.map(true); auto axis_data = reinterpret_cast(_flip_axis.buffer()); if(weights->info()->data_layout() == DataLayout::NHWC) { axis_data[0] = 1; axis_data[1] = 2; } else { axis_data[0] = 0; axis_data[1] = 1; } _flip_axis.unmap(); } void CLDirectDeconvolutionLayer::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); _scale_f.run(); _conv_f.run(); } void CLDirectDeconvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights flipping and mark original weights tensor as unused _weights_flipped.allocator()->allocate(); _flip_weights.run(); _original_weights->mark_as_unused(); // Prepare convolution _conv_f.prepare(); // Free flipped weights if(!_weights_flipped.is_used()) { _weights_flipped.allocator()->free(); } _is_prepared = true; } } } // namespace arm_compute