/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h" #include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h" #include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h" #include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h" #include "src/core/CL/kernels/CLDepthwiseConvolutionLayerNativeKernel.h" #include "src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h" #include "src/core/CL/kernels/CLFillBorderKernel.h" #include "src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h" namespace arm_compute { using namespace arm_compute::misc; using namespace arm_compute::misc::shape_calculator; namespace { Status validate_arguments_3x3(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation) { // This function should be removed and incorporated inside CLDepthwiseConvolutionLayerInternal3x3 once CLDepthwiseConvolutionLayer3x3 is properly removed ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool is_nhwc = input->data_layout() == DataLayout::NHWC; const bool needs_permute = is_nhwc && (depth_multiplier > 1); const bool needs_weights_reshape = is_nhwc && (depth_multiplier == 1) && is_quantized; const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1)); const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1); const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()); DepthwiseConvolutionReshapeInfo info; info.c0 = 4; info.transpose = is_stride_1_dilation_1 && is_dot8_supported; TensorInfo output_multipliers_shifts_info(TensorInfo(TensorShape(1U), 1, DataType::S32)); if(is_quantized) { if(is_data_type_quantized_per_channel(weights->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL); const size_t idx_c = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL); output_multipliers_shifts_info.set_tensor_shape(TensorShape(weights->dimension(idx_c))); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); } } if(needs_permute) { TensorShape permuted_input_shape = input->tensor_shape(); TensorShape permuted_weights_shape = weights->tensor_shape(); const ConvolutionInfo info{ conv_info, depth_multiplier, ActivationLayerInfo(), dilation }; TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, info); permute(permuted_input_shape, PermutationVector(1U, 2U, 0U)); permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U)); permute(permuted_output_shape, PermutationVector(1U, 2U, 0U)); const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW); const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW); const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target, dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info)); } else if(is_nhwc) { if(needs_weights_reshape) { auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases, output, conv_info, depth_multiplier, act_info, dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info)); } else { ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info)); } } else { ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info)); } return Status{}; } } // namespace CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::CLDepthwiseConvolutionLayerGeneric(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _dwc_native_kernel(std::make_unique()), _permute_input_to_nhwc(), _permute_weights_to_nhwc(), _permute_output_to_nchw(), _permuted_input(), _permuted_weights(), _permuted_output(), _output_multipliers(), _output_shifts(), _original_weights(), _input(), _output(), _needs_permute(false), _is_prepared(false), _is_quantized(false) { } CLDepthwiseConvolutionLayer::~CLDepthwiseConvolutionLayer() = default; void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(CLDepthwiseConvolutionLayer::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info, dilation)); _is_quantized = is_data_type_quantized(input->info()->data_type()); _is_prepared = false; _original_weights = weights; _input = input; _output = output; _needs_permute = input->info()->data_layout() == DataLayout::NCHW; ICLTensor *input_to_use = input; const ICLTensor *weights_to_use = weights; ICLTensor *output_to_use = output; if(_needs_permute) { _memory_group.manage(&_permuted_input); _memory_group.manage(&_permuted_output); // Configure the function to transform the input tensor from NCHW -> NHWC _permute_input_to_nhwc.configure(compile_context, input, &_permuted_input, PermutationVector(2U, 0U, 1U)); _permuted_input.info()->set_data_layout(DataLayout::NHWC); // Configure the function to transform the weights tensor from IHW -> HWI _permute_weights_to_nhwc.configure(compile_context, weights, &_permuted_weights, PermutationVector(2U, 0U, 1U)); _permuted_weights.info()->set_data_layout(DataLayout::NHWC); // Set output quantization info before dwc kernel configure _permuted_output.info()->set_quantization_info(output->info()->quantization_info()); input_to_use = &_permuted_input; weights_to_use = &_permuted_weights; output_to_use = &_permuted_output; } CLTensor *output_multipliers_to_use = nullptr; CLTensor *output_shifts_to_use = nullptr; if(_is_quantized) { const size_t idx_c = get_data_layout_dimension_index(weights->info()->data_layout(), DataLayoutDimension::CHANNEL); const size_t num_filters = (is_data_type_quantized_per_channel(weights->info()->data_type())) ? weights->info()->dimension(idx_c) : 1; _output_multipliers.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); _output_shifts.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); output_multipliers_to_use = &_output_multipliers; output_shifts_to_use = &_output_shifts; } DWCWeightsKernelInfo dwc_weights_info; dwc_weights_info.n0 = (depth_multiplier == 1) ? 8 : 1; DWCKernelInfo dwc_info; dwc_info.activation_info = act_info; _dwc_native_kernel->configure(compile_context, input_to_use, weights_to_use, biases, output_to_use, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers_to_use, output_shifts_to_use); if(_needs_permute) { _permuted_input.allocator()->allocate(); // Configure the function to transform the convoluted output to NCHW format _permuted_output.info()->set_data_layout(DataLayout::NCHW); _permute_output_to_nchw.configure(compile_context, &_permuted_output, output, PermutationVector(1U, 2U, 0U)); _permuted_output.allocator()->allocate(); } if(_is_quantized) { _output_multipliers.allocator()->allocate(); _output_shifts.allocator()->allocate(); } } Status CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); DWCWeightsKernelInfo dwc_weights_info; dwc_weights_info.n0 = (depth_multiplier == 1) ? 8 : 1; DWCKernelInfo dwc_info; dwc_info.activation_info = act_info; const bool needs_permute = input->data_layout() == DataLayout::NCHW; const bool is_quantized = is_data_type_quantized(input->data_type()); TensorInfo output_multipliers_shifts_info(TensorInfo(TensorShape(1U), 1, DataType::S32)); if(is_quantized) { if(is_data_type_quantized_per_channel(weights->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL); const size_t idx_c = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL); output_multipliers_shifts_info.set_tensor_shape(TensorShape(weights->dimension(idx_c))); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); } } if(needs_permute) { TensorShape permuted_input_shape = input->tensor_shape(); TensorShape permuted_weights_shape = weights->tensor_shape(); const ConvolutionInfo info{ conv_info, depth_multiplier, ActivationLayerInfo(), dilation }; TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, info); permute(permuted_input_shape, PermutationVector(2U, 0U, 1U)); permute(permuted_weights_shape, PermutationVector(2U, 0U, 1U)); permute(permuted_output_shape, PermutationVector(2U, 0U, 1U)); const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NHWC); const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NHWC); const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NHWC); ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(input, &permuted_input, PermutationVector(2U, 0U, 1U))); ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(weights, &permuted_weights, PermutationVector(2U, 0U, 1U))); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerNativeKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info)); ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(&permuted_output, output, PermutationVector(1U, 2U, 0U))); } else { ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerNativeKernel::validate(input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info)); } return Status{}; } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(_needs_permute) { _permute_input_to_nhwc.run(); } CLScheduler::get().enqueue(*_dwc_native_kernel); if(_needs_permute) { _permute_output_to_nchw.run(); } } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::prepare() { if(!_is_prepared) { if(_is_quantized) { _output_multipliers.map(); _output_shifts.map(); const unsigned int idx_ofms = _needs_permute ? 2 : 0; quantization::compute_quantized_multipliers_and_shifts(_input->info(), _original_weights->info(), _output->info(), idx_ofms, reinterpret_cast(_output_multipliers.ptr_to_element(Coordinates(0))), reinterpret_cast(_output_shifts.ptr_to_element(Coordinates(0)))); _output_multipliers.unmap(); _output_shifts.unmap(); } if(_needs_permute) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); _permuted_weights.allocator()->allocate(); _permute_weights_to_nhwc.run(); _original_weights->mark_as_unused(); } _is_prepared = true; } } CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::CLDepthwiseConvolutionLayerInternal3x3(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(std::make_unique()), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _reshape_weights(std::make_unique()), _permuted_input(), _permuted_weights(), _permuted_output(), _output_multipliers(), _output_shifts(), _original_weights(nullptr), _input(nullptr), _output(nullptr), _needs_permute(false), _needs_weights_reshape(false), _is_prepared(false), _is_quantized(false), _is_nhwc(false) { } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation) { configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation) { const GPUTarget gpu_target = CLScheduler::get().target(); // Perform validation step ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(CLDepthwiseConvolutionLayerInternal3x3::validate(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info, gpu_target, dilation)); _is_nhwc = input->info()->data_layout() == DataLayout::NHWC; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); _needs_permute = _is_nhwc && (depth_multiplier > 1); _needs_weights_reshape = _is_nhwc && (depth_multiplier == 1) && _is_quantized; _is_prepared = false; _original_weights = weights; _input = input; _output = output; ICLTensor *input_to_use = input; const ICLTensor *weights_to_use = weights; ICLTensor *output_to_use = output; const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type()); const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1)); const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel; const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1); DepthwiseConvolutionReshapeInfo info; info.c0 = 4; info.transpose = is_stride_1_dilation_1 && is_dot8_supported; if(_needs_permute) { _memory_group.manage(&_permuted_input); _memory_group.manage(&_permuted_output); // Configure the function to transform the input tensor from NHWC -> NCHW _permute_input_to_nchw.configure(compile_context, input, &_permuted_input, PermutationVector(1U, 2U, 0U)); _permuted_input.info()->set_data_layout(DataLayout::NCHW); // Configure the function to transform the weights tensor from HWI -> IHW _permute_weights_to_nchw.configure(compile_context, weights, &_permuted_weights, PermutationVector(1U, 2U, 0U)); _permuted_weights.info()->set_data_layout(DataLayout::NCHW); _permuted_output.info()->set_quantization_info(output->info()->quantization_info()); input_to_use = &_permuted_input; weights_to_use = &_permuted_weights; output_to_use = &_permuted_output; _kernel = std::make_unique(); } else if(_is_nhwc) { if(_needs_weights_reshape) { _reshape_weights->configure(compile_context, weights, &_permuted_weights, info); weights_to_use = &_permuted_weights; } _kernel = std::make_unique(); } else { _kernel = std::make_unique(); } CLTensor *output_multipliers_to_use = nullptr; CLTensor *output_shifts_to_use = nullptr; if(_is_quantized) { const size_t idx_c = get_data_layout_dimension_index(weights->info()->data_layout(), DataLayoutDimension::CHANNEL); const size_t num_filters = (is_quantized_per_channel) ? weights->info()->dimension(idx_c) : 1; _output_multipliers.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); _output_shifts.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32)); output_multipliers_to_use = &_output_multipliers; output_shifts_to_use = &_output_shifts; } // Configure kernel _kernel->set_target(gpu_target); _kernel->configure(compile_context, input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info, dilation, output_multipliers_to_use, output_shifts_to_use); if(_is_quantized) { _output_multipliers.allocator()->allocate(); _output_shifts.allocator()->allocate(); } // Permute output if needed if(_needs_permute) { // Configure the function to transform the convoluted output to ACL's native ordering format NCHW _permuted_output.info()->set_data_layout(DataLayout::NCHW); _permute_output_to_nhwc.configure(compile_context, &_permuted_output, output, PermutationVector(2U, 0U, 1U)); // Allocate tensors _permuted_input.allocator()->allocate(); _permuted_output.allocator()->allocate(); } // Configure border handler PixelValue &&zero_value(0.f); if(is_data_type_quantized_asymmetric(input->info()->data_type())) { zero_value = PixelValue(static_cast(input->info()->quantization_info().uniform().offset)); } _border_handler->configure(compile_context, input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value); } Status CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation) { return validate_arguments_3x3(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation); } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(_needs_permute) { _permute_input_to_nchw.run(); } CLScheduler::get().enqueue(*_border_handler); CLScheduler::get().enqueue(*_kernel); if(_needs_permute) { _permute_output_to_nhwc.run(); } } void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::prepare() { if(!_is_prepared) { if(_is_quantized) { _output_multipliers.map(); _output_shifts.map(); const unsigned int idx_ofms = _is_nhwc ? 0 : 2; quantization::compute_quantized_multipliers_and_shifts(_input->info(), _original_weights->info(), _output->info(), idx_ofms, reinterpret_cast(_output_multipliers.ptr_to_element(Coordinates(0))), reinterpret_cast(_output_shifts.ptr_to_element(Coordinates(0)))); _output_multipliers.unmap(); _output_shifts.unmap(); } if(_needs_permute) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); _permuted_weights.allocator()->allocate(); _permute_weights_to_nchw.run(); _original_weights->mark_as_unused(); } if(_needs_weights_reshape) { ARM_COMPUTE_ERROR_ON(_needs_permute); ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); _permuted_weights.allocator()->allocate(); CLScheduler::get().enqueue(*_reshape_weights); _original_weights->mark_as_unused(); } _is_prepared = true; } } CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer(std::shared_ptr memory_manager) : _memory_manager(std::move(memory_manager)), _depth_conv_func(DepthwiseConvolutionFunction::GENERIC), _func_3x3(), _func_generic() { } void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation) { configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); } void CLDepthwiseConvolutionLayer::configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation) { const GPUTarget gpu_target = CLScheduler::get().target(); _depth_conv_func = get_depthwiseconvolution_function(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info, dilation, gpu_target); switch(_depth_conv_func) { case DepthwiseConvolutionFunction::OPTIMIZED: _func_3x3.set_memory_group(_memory_manager); _func_3x3.configure(compile_context, input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); break; case DepthwiseConvolutionFunction::GENERIC: { _func_generic.set_memory_group(_memory_manager); _func_generic.configure(compile_context, input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); } break; default: ARM_COMPUTE_ERROR("Unsupported DepthwiseConvolutionFunction"); } } Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation) { const GPUTarget gpu_target = CLScheduler::get().target(); DepthwiseConvolutionFunction depth_conv_func = get_depthwiseconvolution_function(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, gpu_target); switch(depth_conv_func) { case DepthwiseConvolutionFunction::OPTIMIZED: return CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation); case DepthwiseConvolutionFunction::GENERIC: return CLDepthwiseConvolutionLayerGeneric::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); default: ARM_COMPUTE_ERROR("Unsupported DepthwiseConvolutionFunction"); } } DepthwiseConvolutionFunction CLDepthwiseConvolutionLayer::get_depthwiseconvolution_function(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation, GPUTarget gpu_target) { if(bool(CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation)) && (is_data_type_float(input->data_type()) || get_arch_from_target(gpu_target) == GPUTarget::MIDGARD)) { return DepthwiseConvolutionFunction::OPTIMIZED; } else { return DepthwiseConvolutionFunction::GENERIC; } } void CLDepthwiseConvolutionLayer::run() { switch(_depth_conv_func) { case DepthwiseConvolutionFunction::OPTIMIZED: _func_3x3.run(); break; case DepthwiseConvolutionFunction::GENERIC: _func_generic.run(); break; default: ARM_COMPUTE_ERROR("DepthwiseConvolutionFunction not properly configured"); } } void CLDepthwiseConvolutionLayer::prepare() { switch(_depth_conv_func) { case DepthwiseConvolutionFunction::OPTIMIZED: _func_3x3.prepare(); break; case DepthwiseConvolutionFunction::GENERIC: _func_generic.prepare(); break; default: ARM_COMPUTE_ERROR("DepthwiseConvolutionFunction not properly configured"); } } } // namespace arm_compute