/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h" #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "support/ToolchainSupport.h" namespace arm_compute { using namespace arm_compute::misc; using namespace arm_compute::misc::shape_calculator; CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _reshape_weights(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _needs_permute(false), _needs_weights_reshape(false), _is_prepared(false) { } void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); // idx_w and idx_h only used for validation const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_UNUSED(idx_w); ARM_COMPUTE_UNUSED(idx_h); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC; _needs_permute = is_nhwc && (depth_multiplier > 1); _needs_weights_reshape = is_nhwc && (depth_multiplier == 1) && is_data_type_quantized_asymmetric(input->info()->data_type()); _is_prepared = false; _original_weights = weights; ICLTensor *input_to_use = input; const ICLTensor *weights_to_use = weights; ICLTensor *output_to_use = output; const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1)); const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()); const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1); DepthwiseConvolutionReshapeInfo info; info.c0 = 4; info.transpose = is_stride_1_dilation_1 && is_dot8_supported; if(_needs_permute) { _memory_group.manage(&_permuted_input); _memory_group.manage(&_permuted_output); // Configure the function to transform the input tensor from NHWC -> NCHW _permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U)); _permuted_input.info()->set_data_layout(DataLayout::NCHW); // Configure the function to transform the weights tensor from HWI -> IHW _permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U)); _permuted_weights.info()->set_data_layout(DataLayout::NCHW); input_to_use = &_permuted_input; weights_to_use = &_permuted_weights; output_to_use = &_permuted_output; _kernel = arm_compute::support::cpp14::make_unique(); } else if(is_nhwc) { if(_needs_weights_reshape) { _reshape_weights.configure(weights, &_permuted_weights, info); weights_to_use = &_permuted_weights; } _kernel = arm_compute::support::cpp14::make_unique(); } else { _kernel = arm_compute::support::cpp14::make_unique(); } // Configure kernel _kernel->set_target(CLScheduler::get().target()); _kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info, dilation); // Permute output if needed if(_needs_permute) { // Configure the function to transform the convoluted output to ACL's native ordering format NCHW _permuted_output.info()->set_data_layout(DataLayout::NCHW); _permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U)); // Allocate tensors _permuted_input.allocator()->allocate(); _permuted_output.allocator()->allocate(); } // Configure border handler PixelValue &&zero_value(0.f); if(is_data_type_quantized_asymmetric(input->info()->data_type())) { zero_value = PixelValue(static_cast(input->info()->quantization_info().offset)); } _border_handler.configure(input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value); } Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); const bool is_nhwc = input->data_layout() == DataLayout::NHWC; const bool needs_permute = is_nhwc && (depth_multiplier > 1); const bool needs_weights_reshape = is_nhwc && (depth_multiplier == 1); const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1)); const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1); const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()); DepthwiseConvolutionReshapeInfo info; info.c0 = 4; info.transpose = is_stride_1_dilation_1 && is_dot8_supported; if(needs_permute) { TensorShape permuted_input_shape = input->tensor_shape(); TensorShape permuted_weights_shape = weights->tensor_shape(); TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); permute(permuted_input_shape, PermutationVector(1U, 2U, 0U)); permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U)); permute(permuted_output_shape, PermutationVector(1U, 2U, 0U)); const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW); const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW); const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target, dilation)); } else if(is_nhwc) { if(needs_weights_reshape) { auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases, output, conv_info, depth_multiplier, act_info, dilation)); } ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation)); } else { ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation)); } return Status{}; } void CLDepthwiseConvolutionLayer3x3::run() { prepare(); MemoryGroupResourceScope scope_mg(_memory_group); if(_needs_permute) { _permute_input_to_nchw.run(); } CLScheduler::get().enqueue(_border_handler); CLScheduler::get().enqueue(*_kernel); if(_needs_permute) { _permute_output_to_nhwc.run(); } } void CLDepthwiseConvolutionLayer3x3::prepare() { if(!_is_prepared) { if(_needs_permute) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); _permuted_weights.allocator()->allocate(); _permute_weights_to_nchw.run(); _original_weights->mark_as_unused(); } if(_needs_weights_reshape) { ARM_COMPUTE_ERROR_ON(_needs_permute); ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); _permuted_weights.allocator()->allocate(); CLScheduler::get().enqueue(_reshape_weights); _original_weights->mark_as_unused(); } _is_prepared = true; } } CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer() : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _activationlayer_function(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _is_activationlayer_enabled(false), _original_weights(nullptr), _optimised_function(nullptr) { } void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_w) + (weights->info()->dimension(idx_w) - 1) * (dilation.x() - 1) > input->info()->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(idx_h) + (weights->info()->dimension(idx_h) - 1) * (dilation.y() - 1) > input->info()->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); const bool can_run_optimised_3x3_kernel = (weights->info()->dimension(idx_w) == 3) && (weights->info()->dimension(idx_h) == 3); if(bool(can_run_optimised_3x3_kernel)) { auto f = arm_compute::support::cpp14::make_unique(); f->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation); _optimised_function = std::move(f); } else { const size_t idx_c = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL); const size_t weights_w = weights->info()->dimension(idx_w); const size_t weights_h = weights->info()->dimension(idx_h); const size_t weights_z = weights->info()->dimension(idx_c); _is_prepared = false; _original_weights = weights; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); bool append_bias = (biases != nullptr) && !_is_quantized; const GPUTarget gpu_target = CLScheduler::get().target(); // Calculate output shape TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape); // Output width and height const unsigned int conv_w = output_shape[idx_w]; const unsigned int conv_h = output_shape[idx_h]; // Set up intermediate tensors const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0); const size_t conv_size = conv_w * conv_h; // Im2Col configuration TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); _im2col_kernel.set_target(gpu_target); _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation); CLScheduler::get().tune_kernel_static(_im2col_kernel); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr); // GEMV configuration DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type(); TensorShape shape_v2mm_out = input->info()->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); _v2mm_kernel.set_target(gpu_target); _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output); CLScheduler::get().tune_kernel_static(_v2mm_kernel); _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h); // Output staged configuration if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset); _output_reshaped.allocator()->allocate(); } // Fill borders on inputs PixelValue zero_in(static_cast(0)); PixelValue zero_w(static_cast(0)); if(_is_quantized) { zero_in = PixelValue(static_cast(input->info()->quantization_info().offset)); zero_w = PixelValue(static_cast(weights->info()->quantization_info().offset)); } BorderSize border_size = _v2mm_kernel.border_size(); _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in); border_size.bottom = 0; _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w); // Allocate intermediate tensors _input_reshaped.allocator()->allocate(); _v2mm_output.allocator()->allocate(); //Configure Activation Layer _is_activationlayer_enabled = act_info.enabled(); if(_is_activationlayer_enabled) { _activationlayer_function.configure(output, nullptr, act_info); } } } Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation) { const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom()); const bool can_run_optimised_3x3_kernel = (weights->dimension(idx_w) == 3) && (weights->dimension(idx_h) == 3); if(can_run_optimised_3x3_kernel) { const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(idx_c) * depth_multiplier) != weights->dimension(idx_c)); const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool append_bias = (biases != nullptr) && !is_quantized; const TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); const size_t weights_w = weights->dimension(idx_w); const size_t weights_h = weights->dimension(idx_h); const size_t weights_z = weights->dimension(idx_c); const unsigned int conv_w = output_shape[idx_w]; const unsigned int conv_h = output_shape[idx_h]; const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0); const size_t conv_size = conv_w * conv_h; TensorShape shape_im2col = input->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseIm2ColKernel::validate(input, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation)); const TensorShape shape_weights_reshape(patch_size, weights_z); TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerReshapeWeightsGenericKernel::validate(weights, &weights_reshaped, append_bias ? biases : nullptr)); DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type(); TensorShape shape_v2mm_out = input->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output)); TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output, conv_w, conv_h)); if(is_quantized) { ARM_COMPUTE_RETURN_ON_ERROR(CLDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output)); } // Validate Activation Layer if(act_info.enabled()) { ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info)); } } else { CLDepthwiseConvolutionLayer3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, GPUTarget::MIDGARD, dilation); } return Status{}; } void CLDepthwiseConvolutionLayer::run() { prepare(); if(_optimised_function != nullptr) { _optimised_function->run(); } else { CLScheduler::get().enqueue(_im2col_kernel); CLScheduler::get().enqueue(_v2mm_input_fill_border); CLScheduler::get().enqueue(_v2mm_kernel); CLScheduler::get().enqueue(_vector_to_tensor_kernel); if(_is_quantized) { CLScheduler::get().enqueue(_output_stage_kernel); } if(_is_activationlayer_enabled) { _activationlayer_function.run(); } } } void CLDepthwiseConvolutionLayer::prepare() { if(_optimised_function != nullptr) { _optimised_function->prepare(); } else { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights reshaping and mark original weights tensor as unused _weights_reshaped.allocator()->allocate(); CLScheduler::get().enqueue(_weights_reshape_kernel); CLScheduler::get().enqueue(_v2mm_weights_fill_border); _original_weights->mark_as_unused(); CLScheduler::get().queue().finish(); _is_prepared = true; } } } } // namespace arm_compute