/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h" #include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "support/ToolchainSupport.h" using namespace arm_compute; using namespace arm_compute::misc; using namespace arm_compute::misc::shape_calculator; CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3() : _kernel(nullptr), _border_handler() { } void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); if(input->info()->data_layout() == DataLayout::NCHW) { _kernel = arm_compute::support::cpp14::make_unique(); } else { _kernel = arm_compute::support::cpp14::make_unique(); } _kernel->set_target(CLScheduler::get().target()); _kernel->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info); // Configure border handler PixelValue &&zero_value(0.f); if(is_data_type_quantized_asymmetric(input->info()->data_type())) { zero_value = PixelValue(static_cast(input->info()->quantization_info().offset)); } _border_handler.configure(input, _kernel->border_size(), BorderMode::CONSTANT, zero_value); } Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); if(input->data_layout() == DataLayout::NCHW) { return CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target); } return CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info); } void CLDepthwiseConvolutionLayer3x3::run() { CLScheduler::get().enqueue(_border_handler); CLScheduler::get().enqueue(*_kernel); } CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer() : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _original_weights(nullptr) { } void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT); const size_t idx_c = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL); const size_t weights_w = weights->info()->dimension(idx_w); const size_t weights_h = weights->info()->dimension(idx_h); const size_t weights_z = weights->info()->dimension(idx_c); _is_prepared = false; _original_weights = weights; _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); bool append_bias = (biases != nullptr) && !_is_quantized; const GPUTarget gpu_target = CLScheduler::get().target(); // Calculate output shape TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape); // Output width and height const unsigned int conv_w = output_shape[idx_w]; const unsigned int conv_h = output_shape[idx_h]; // Set up intermediate tensors const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0); const size_t conv_size = conv_w * conv_h; // Im2Col configuration TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); _im2col_kernel.set_target(gpu_target); _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier); CLScheduler::get().tune_kernel_static(_im2col_kernel); // Weights reshape configuration const TensorShape shape_weights_reshape(patch_size, weights_z); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr); // GEMV configuration DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type(); TensorShape shape_v2mm_out = input->info()->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); _v2mm_kernel.set_target(gpu_target); _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output); CLScheduler::get().tune_kernel_static(_v2mm_kernel); _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h); // Output staged configuration if(_is_quantized) { const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info(); float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset); _output_reshaped.allocator()->allocate(); } // Fill borders on inputs PixelValue zero_in(static_cast(0)); PixelValue zero_w(static_cast(0)); if(_is_quantized) { zero_in = PixelValue(static_cast(input->info()->quantization_info().offset)); zero_w = PixelValue(static_cast(weights->info()->quantization_info().offset)); } BorderSize border_size = _v2mm_kernel.border_size(); _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in); border_size.bottom = 0; _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w); // Allocate intermediate tensors _input_reshaped.allocator()->allocate(); _v2mm_output.allocator()->allocate(); } Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier) { const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT); const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(idx_c) * depth_multiplier) != weights->dimension(idx_c)); const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type()); const bool append_bias = (biases != nullptr) && !is_quantized; const TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier); const size_t weights_w = weights->dimension(idx_w); const size_t weights_h = weights->dimension(idx_h); const size_t weights_z = weights->dimension(idx_c); const unsigned int conv_w = output_shape[idx_w]; const unsigned int conv_h = output_shape[idx_h]; const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0); const size_t conv_size = conv_w * conv_h; TensorShape shape_im2col = input->tensor_shape(); shape_im2col.set(0, patch_size); shape_im2col.set(1, conv_size); shape_im2col.set(2, weights_z); TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col)); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseIm2ColKernel::validate(input, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier)); const TensorShape shape_weights_reshape(patch_size, weights_z); TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape)); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseWeightsReshapeKernel::validate(weights, &weights_reshaped, append_bias ? biases : nullptr)); DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type(); TensorShape shape_v2mm_out = input->tensor_shape(); shape_v2mm_out.set(0, conv_size * weights_z); shape_v2mm_out.set(1, 1); shape_v2mm_out.set(2, 1); TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out)); ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output)); TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape)); ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output, conv_w, conv_h)); if(is_quantized) { ARM_COMPUTE_RETURN_ON_ERROR(CLDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output)); } return Status{}; } void CLDepthwiseConvolutionLayer::run() { prepare(); CLScheduler::get().enqueue(_im2col_kernel); CLScheduler::get().enqueue(_v2mm_input_fill_border); CLScheduler::get().enqueue(_v2mm_kernel); CLScheduler::get().enqueue(_vector_to_tensor_kernel); if(_is_quantized) { CLScheduler::get().enqueue(_output_stage_kernel); } } void CLDepthwiseConvolutionLayer::prepare() { if(!_is_prepared) { ARM_COMPUTE_ERROR_ON(!_original_weights->is_used()); // Run weights reshaping and mark original weights tensor as unused _weights_reshaped.allocator()->allocate(); CLScheduler::get().enqueue(_weights_reshape_kernel); CLScheduler::get().enqueue(_v2mm_weights_fill_border); _original_weights->mark_as_unused(); CLScheduler::get().queue().finish(); _is_prepared = true; } }