/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include #include #include using namespace arm_compute; CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false) { } void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose1xW) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4); if(biases != nullptr) { ARM_COMPUTE_ERROR_ON(is_data_type_quantized_asymmetric(weights->info()->data_type())); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3)); ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1); } const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type()); const unsigned bias_element = (append_biases) ? 1 : 0; const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr; _transpose1xW = transpose1xW; if(transpose1xW) { // Create tensor to store the reshaped weights const unsigned int mat_weights_cols = weights->info()->dimension(3); const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element; TensorShape shape_wr(mat_weights_cols, mat_weights_rows); const DataType dt = weights->info()->data_type(); const int fixed_point_position = weights->info()->fixed_point_position(); TensorInfo info_wr(shape_wr, 1, dt, fixed_point_position); _weights_reshaped.allocator()->init(info_wr); _memory_group.manage(&_weights_reshaped); _weights_reshape_kernel.configure(weights, biases_to_use, &_weights_reshaped); _weights_transposed_kernel.configure(&_weights_reshaped, output); _weights_reshaped.allocator()->allocate(); } else { _weights_reshape_kernel.configure(weights, biases_to_use, output); } } void CLConvolutionLayerReshapeWeights::run() { _memory_group.acquire(); cl::CommandQueue q = CLScheduler::get().queue(); CLScheduler::get().enqueue(_weights_reshape_kernel); if(_transpose1xW) { CLScheduler::get().enqueue(_weights_transposed_kernel); } _memory_group.release(); } CLConvolutionLayer::CLConvolutionLayer(std::shared_ptr memory_manager) : _memory_group(memory_manager), _reshape_weights(), _input_im2col_kernel(), _input_interleave_kernel(), _mm_kernel(), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _output_col2im_kernel(), _input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _tmp_output(), _append_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false), _is_quantized(false) { } void CLConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output, bool is_interleaved_transposed) { if(_is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = input->info()->quantization_info(); const QuantizationInfo weights_quantization_info = weights->info()->quantization_info(); input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset)); weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset)); _mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)); // Revert back QuantizatioInfo as input and weights could be used in other convolution layers input->info()->set_quantization_info(input_quantization_info); weights->info()->set_quantization_info(weights_quantization_info); } else { _mm_kernel.configure(input, weights, output, 1.f, is_interleaved_transposed); } } void CLConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights); ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2)); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4); ARM_COMPUTE_ERROR_ON(weights_info.are_reshaped() && is_data_type_quantized_asymmetric(input->info()->data_type())); _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); if(biases != nullptr) { if(_is_quantized) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); } ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases); ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3)); ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1); } const DataType dt = input->info()->data_type(); // Set the GPU target for matrix multiply _mm_kernel.set_target(CLScheduler::get().target()); _append_bias = (biases != nullptr) && (!_is_quantized); _are_weights_reshaped = weights_info.are_reshaped(); const unsigned bias_element = (_append_bias) ? 1 : 0; const ICLTensor *biases_to_use = (_append_bias) ? biases : nullptr; // Get parameters from conv_info unsigned int stride_x = 0; unsigned int stride_y = 0; std::tie(stride_x, stride_y) = conv_info.stride(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; const unsigned int kernel_width = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0); const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1); std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height, conv_info); // Check if its a "fully connected" convolution _is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1)); const bool run_interleaved = (!_is_fully_connected_convolution && !_is_quantized); unsigned int mat_weights_cols = weights->info()->dimension(3); unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element; // Reshape weights if needed if(_are_weights_reshaped) { mat_weights_cols = weights_info.num_kernels(); const unsigned int quarter_reshaped_cols = weights->info()->dimension(0) / 4; mat_weights_rows = quarter_reshaped_cols + bias_element; } else { if(_is_fully_connected_convolution || _is_quantized) { // Create tensor to store the reshaped weights TensorShape shape_wr(mat_weights_cols, mat_weights_rows); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_wr)); _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, false /* 1xW transpose */); } else { // Create tensor to store transposed weights const float transpose_width = 16.0f / input->info()->element_size(); TensorShape shape_wt(mat_weights_rows * static_cast(transpose_width), static_cast(std::ceil(mat_weights_cols / transpose_width))); _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_wt)); _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, true /* 1xW transpose */); } _weights_reshaped.info()->set_quantization_info(weights->info()->quantization_info()); weights = &_weights_reshaped; } // Create tensor to store im2col reshaped inputs const unsigned int mat_input_cols = mat_weights_rows; const unsigned int mat_input_rows = conv_w * conv_h; TensorShape shape_im2col = input->info()->tensor_shape(); shape_im2col.set(0, mat_input_cols); shape_im2col.set(1, mat_input_rows); shape_im2col.set(2, 1); // FIXME: input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->info()->fixed_point_position()); im2col_reshaped_info.set_quantization_info(input->info()->quantization_info()); _input_im2col_reshaped.allocator()->init(im2col_reshaped_info); _memory_group.manage(&_input_im2col_reshaped); // Create tensor (interleave) to prepare input tensor for GEMM if(run_interleaved) { TensorShape shape_interleaved = shape_im2col; shape_interleaved.set(0, shape_interleaved.x() * 4); shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f)); // FIXME: input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo interleaved_info(shape_interleaved, 1, dt, input->info()->fixed_point_position()); interleaved_info.set_quantization_info(input->info()->quantization_info()); _input_interleaved_reshaped.allocator()->init(interleaved_info); _memory_group.manage(&_input_interleaved_reshaped); } // Create GEMM output tensor TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, mat_input_rows); const DataType gemm_data_type = _is_quantized ? DataType::S32 : dt; // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input. // FIXME: input->clone() doesn't work with subtensors for grouped convolutions. TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position()); info_gemm.set_quantization_info(output->info()->quantization_info()); _gemm_output.allocator()->init(info_gemm); _memory_group.manage(&_gemm_output); // Configure kernels _input_im2col_kernel.set_target(CLScheduler::get().target()); _input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _append_bias); // Configure matrix multiply if(run_interleaved) { _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped); configure_mm(&_input_interleaved_reshaped, weights, &_gemm_output); _input_interleaved_reshaped.allocator()->allocate(); } else { configure_mm(&_input_im2col_reshaped, weights, &_gemm_output, false); } _input_im2col_reshaped.allocator()->allocate(); // Configure output stage for quantized case if(_is_quantized) { float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale; int output_multiplier, output_shift; quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); _gemmlowp_output_stage.configure(&_gemm_output, biases, &_tmp_output, output_multiplier, output_shift, output->info()->quantization_info().offset); _gemm_output.allocator()->allocate(); } // Configure Col2Im _output_col2im_kernel.set_target(CLScheduler::get().target()); _output_col2im_kernel.configure(_is_quantized ? &_tmp_output : &_gemm_output, output, std::make_pair(conv_w, conv_h)); if(_is_quantized) { _tmp_output.allocator()->allocate(); } else { _gemm_output.allocator()->allocate(); } ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one"); // Allocate intermediate tensor if(!_are_weights_reshaped) { _weights_reshaped.allocator()->allocate(); } } void CLConvolutionLayer::run() { // Run weights reshaping (Runs once for every configure) if(!_are_weights_reshaped) { _are_weights_reshaped = true; _reshape_weights.run(); } _memory_group.acquire(); // Run im2col CLScheduler::get().enqueue(_input_im2col_kernel); if(!_is_fully_connected_convolution && !_is_quantized) { // Run interleave4x4 CLScheduler::get().enqueue(_input_interleave_kernel); } // Runs matrix multiply on reshaped matrices if(_is_quantized) { _mm_gemmlowp.run(); } else { CLScheduler::get().enqueue(_mm_kernel); } // Run output stage for quantized case if(_is_quantized) { _gemmlowp_output_stage.run(); } // Reshape output matrix CLScheduler::get().enqueue(_output_col2im_kernel, false); _memory_group.release(); }