/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLCannyEdge.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/CL/functions/CLSobel3x3.h" #include "arm_compute/runtime/CL/functions/CLSobel5x5.h" #include "arm_compute/runtime/CL/functions/CLSobel7x7.h" #include "support/ToolchainSupport.h" using namespace arm_compute; CLCannyEdge::CLCannyEdge(std::shared_ptr memory_manager) // NOLINT : _memory_group(std::move(memory_manager)), _sobel(), _gradient(), _border_mag_gradient(), _non_max_suppr(), _edge_trace(), _gx(), _gy(), _mag(), _phase(), _nonmax(), _visited(), _recorded(), _l1_list_counter(), _l1_stack(), _output(nullptr) { } void CLCannyEdge::configure(ICLTensor *input, ICLTensor *output, int32_t upper_thr, int32_t lower_thr, int32_t gradient_size, int32_t norm_type, BorderMode border_mode, uint8_t constant_border_value) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8); ARM_COMPUTE_ERROR_ON((1 != norm_type) && (2 != norm_type)); ARM_COMPUTE_ERROR_ON((gradient_size != 3) && (gradient_size != 5) && (gradient_size != 7)); ARM_COMPUTE_ERROR_ON((lower_thr < 0) || (lower_thr >= upper_thr)); _output = output; const unsigned int L1_hysteresis_stack_size = 8; const TensorShape shape = input->info()->tensor_shape(); TensorInfo gradient_info; TensorInfo info; // Initialize images if(gradient_size < 7) { gradient_info.init(shape, 1, arm_compute::DataType::S16); info.init(shape, 1, arm_compute::DataType::U16); } else { gradient_info.init(shape, 1, arm_compute::DataType::S32); info.init(shape, 1, arm_compute::DataType::U32); } _gx.allocator()->init(gradient_info); _gy.allocator()->init(gradient_info); _mag.allocator()->init(info); _nonmax.allocator()->init(info); TensorInfo info_u8(shape, 1, arm_compute::DataType::U8); _phase.allocator()->init(info_u8); _l1_list_counter.allocator()->init(info_u8); TensorInfo info_u32(shape, 1, arm_compute::DataType::U32); _visited.allocator()->init(info_u32); _recorded.allocator()->init(info_u32); TensorShape shape_l1_stack = input->info()->tensor_shape(); shape_l1_stack.set(0, input->info()->dimension(0) * L1_hysteresis_stack_size); TensorInfo info_s32(shape_l1_stack, 1, arm_compute::DataType::S32); _l1_stack.allocator()->init(info_s32); // Manage intermediate buffers _memory_group.manage(&_gx); _memory_group.manage(&_gy); // Configure/Init sobelNxN if(gradient_size == 3) { auto k = arm_compute::support::cpp14::make_unique(); k->configure(input, &_gx, &_gy, border_mode, constant_border_value); _sobel = std::move(k); } else if(gradient_size == 5) { auto k = arm_compute::support::cpp14::make_unique(); k->configure(input, &_gx, &_gy, border_mode, constant_border_value); _sobel = std::move(k); } else if(gradient_size == 7) { auto k = arm_compute::support::cpp14::make_unique(); k->configure(input, &_gx, &_gy, border_mode, constant_border_value); _sobel = std::move(k); } else { ARM_COMPUTE_ERROR("Gradient size %d not supported", gradient_size); } // Manage intermediate buffers _memory_group.manage(&_mag); _memory_group.manage(&_phase); // Configure gradient _gradient.configure(&_gx, &_gy, &_mag, &_phase, norm_type); // Allocate intermediate buffers _gx.allocator()->allocate(); _gy.allocator()->allocate(); // Manage intermediate buffers _memory_group.manage(&_nonmax); // Configure non-maxima suppression _non_max_suppr.configure(&_mag, &_phase, &_nonmax, lower_thr, border_mode == BorderMode::UNDEFINED); // Allocate intermediate buffers _phase.allocator()->allocate(); // Fill border around magnitude image as non-maxima suppression will access // it. If border mode is undefined filling the border is a nop. _border_mag_gradient.configure(&_mag, _non_max_suppr.border_size(), border_mode, constant_border_value); // Allocate intermediate buffers _mag.allocator()->allocate(); // Manage intermediate buffers _memory_group.manage(&_visited); _memory_group.manage(&_recorded); _memory_group.manage(&_l1_stack); _memory_group.manage(&_l1_list_counter); // Configure edge tracing _edge_trace.configure(&_nonmax, output, upper_thr, lower_thr, &_visited, &_recorded, &_l1_stack, &_l1_list_counter); // Allocate intermediate buffers _visited.allocator()->allocate(); _recorded.allocator()->allocate(); _l1_stack.allocator()->allocate(); _l1_list_counter.allocator()->allocate(); _nonmax.allocator()->allocate(); } void CLCannyEdge::run() { MemoryGroupResourceScope scope_mg(_memory_group); // Run sobel _sobel->run(); // Run phase and magnitude calculation CLScheduler::get().enqueue(_gradient, false); // Fill border before non-maxima suppression. Nop for border mode undefined. CLScheduler::get().enqueue(_border_mag_gradient, false); // Run non max suppresion _nonmax.clear(CLScheduler::get().queue()); CLScheduler::get().enqueue(_non_max_suppr, false); // Clear temporary structures and run edge trace _output->clear(CLScheduler::get().queue()); _visited.clear(CLScheduler::get().queue()); _recorded.clear(CLScheduler::get().queue()); _l1_list_counter.clear(CLScheduler::get().queue()); _l1_stack.clear(CLScheduler::get().queue()); CLScheduler::get().enqueue(_edge_trace, true); }