/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/functions/CLArgMinMaxLayer.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/runtime/Utils.h" namespace arm_compute { CLArgMinMaxLayer::CLArgMinMaxLayer(std::shared_ptr memory_manager) : _memory_group(std::move(memory_manager)), _results_vector(), _not_reshaped_output(), _reduction_kernels_vector(), _reshape(), _num_of_stages(), _reduction_axis() { } Status CLArgMinMaxLayer::validate(const ITensorInfo *input, int axis, const ITensorInfo *output, const ReductionOperation &op) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S32, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(op != ReductionOperation::ARG_IDX_MAX && op != ReductionOperation::ARG_IDX_MIN, "Invalid reduction operation"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= static_cast(TensorShape::num_max_dimensions), "Reduction axis greater than max number of dimensions"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis"); const unsigned int num_of_stages = calculate_number_of_stages_only_x_axis(input->dimension(0), axis); DataType output_data_type = DataType::S32; TensorInfo not_reshaped_output; const auto input_num_channles = input->num_channels(); const auto input_qinfo = input->quantization_info(); if(output->total_size() != 0) { output_data_type = output->data_type(); const TensorInfo expected_output_shape = output->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_reduced_shape(input->tensor_shape(), axis, false)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output_shape, output); } auto shape_before_reshape = input->tensor_shape(); shape_before_reshape.set(axis, 1); auto initialize_tensorinfo = [](TensorInfo & ti, TensorShape shape, DataType data_type, int num_channels, QuantizationInfo qinfo) { ti.set_data_type(data_type).set_tensor_shape(shape).set_num_channels(num_channels).set_quantization_info(qinfo); }; initialize_tensorinfo(not_reshaped_output, shape_before_reshape, output_data_type, input_num_channles, input_qinfo); if(num_of_stages == 1) { ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, nullptr, ¬_reshaped_output, axis, op)); } else { // Create temporary tensor infos std::vector sums_vector(num_of_stages - 1); // Create intermediate tensor info TensorShape shape{ input->tensor_shape() }; for(unsigned int i = 0; i < num_of_stages - 1; i++) { shape.set(0, ceil(shape.x() / 128.f)); sums_vector[i].set_data_type(input->data_type()); sums_vector[i].set_tensor_shape(shape); sums_vector[i].set_num_channels(input->num_channels()); } // Validate ReductionOperation only on first kernel ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, nullptr, &sums_vector[0], axis, op)); // Validate ReductionOperation on intermediate stages for(unsigned int i = 1; i < num_of_stages - 1; ++i) { ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, &sums_vector[i - 1], &sums_vector[i], axis, op)); } // Validate ReductionOperation on the last stage const unsigned int last_stage = num_of_stages - 1; ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, &sums_vector[last_stage - 1], ¬_reshaped_output, axis, op)); } ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(¬_reshaped_output, output)); return Status{}; } void CLArgMinMaxLayer::configure(const ICLTensor *input, int axis, ICLTensor *output, const ReductionOperation &op) { configure(CLKernelLibrary::get().get_compile_context(), input, axis, output, op); } void CLArgMinMaxLayer::configure(const CLCompileContext &compile_context, const ICLTensor *input, int axis, ICLTensor *output, const ReductionOperation &op) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); _num_of_stages = calculate_number_of_stages_only_x_axis(input->info()->dimension(0), axis); _reduction_axis = axis; const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_reduced_shape(input->info()->tensor_shape(), axis, false); DataType output_data_type = (output->info()->data_type() == DataType::UNKNOWN) ? DataType::S32 : output->info()->data_type(); auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true)); // Configure reduction operation kernels _reduction_kernels_vector.resize(_num_of_stages); _memory_group.manage(&_not_reshaped_output); // Create temporary tensors if(_num_of_stages == 1) { _reduction_kernels_vector[0].configure(compile_context, input, nullptr, &_not_reshaped_output, axis, op); } else { _results_vector.resize(_num_of_stages - 1); TensorShape shape{ input->info()->tensor_shape() }; for(unsigned int i = 0; i < _num_of_stages - 1; i++) { shape.set(0, ceil(shape.x() / 128.f)); _results_vector[i].allocator()->init(input->info()->clone()->set_tensor_shape(shape).set_data_type(output_data_type)); } // Apply ReductionOperation only on first kernel _memory_group.manage(&_results_vector[0]); _reduction_kernels_vector[0].configure(compile_context, input, nullptr, &_results_vector[0], axis, op); // Apply ReductionOperation on intermediate stages for(unsigned int i = 1; i < _num_of_stages - 1; ++i) { _memory_group.manage(&_results_vector[i]); _reduction_kernels_vector[i].configure(compile_context, input, &_results_vector[i - 1], &_results_vector[i], axis, op); _results_vector[i - 1].allocator()->allocate(); } // Apply ReductionOperation on the last stage const unsigned int last_stage = _num_of_stages - 1; _reduction_kernels_vector[last_stage].configure(compile_context, input, &_results_vector[last_stage - 1], &_not_reshaped_output, axis, op); _results_vector[last_stage - 1].allocator()->allocate(); } _reshape.configure(compile_context, &_not_reshaped_output, output); _not_reshaped_output.allocator()->allocate(); } void CLArgMinMaxLayer::run() { MemoryGroupResourceScope scope_mg(_memory_group); for(unsigned int i = 0; i < _num_of_stages; ++i) { CLScheduler::get().enqueue(_reduction_kernels_vector[i], false); } _reshape.run(); } } // namespace arm_compute