/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/CLTuner.h" #include "arm_compute/core/CL/ICLKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include #include #include #include #include using namespace arm_compute; namespace { /* Function to be used to intercept kernel enqueues and store their OpenCL Event */ class Interceptor { public: explicit Interceptor(CLTuner &tuner); /** clEnqueueNDRangeKernel interface * * @param[in] command_queue A valid command-queue. The kernel will be queued for execution on the device associated with command_queue. * @param[in] kernel A valid kernel object. The OpenCL context associated with kernel and command_queue must be the same. * @param[in] work_dim The number of dimensions used to specify the global work-items and work-items in the work-group. work_dim must be greater than zero and less than or equal to CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS. * @param[in] gwo Global-Workgroup-Offset. It can be used to specify an array of work_dim unsigned values that describe the offset used to calculate the global ID of a work-item. If global_work_offset is NULL, the global IDs start at offset (0, 0, ... 0). * @param[in] gws Global-Workgroup-Size. Points to an array of work_dim unsigned values that describe the number of global work-items in work_dim dimensions that will execute the kernel function. * @param[in] lws Local-Workgroup-Size. Points to an array of work_dim unsigned values that describe the number of work-items that make up a work-group * @param[in] num_events_in_wait_list Number of events in the waiting list * @param[in] event_wait_list Event waiting list * @param[in] event OpenCL kernel event * * @return the OpenCL status */ cl_int operator()(cl_command_queue command_queue, cl_kernel kernel, cl_uint work_dim, const size_t *gwo, const size_t *gws, const size_t *lws, cl_uint num_events_in_wait_list, const cl_event *event_wait_list, cl_event *event); private: CLTuner &_tuner; }; Interceptor::Interceptor(CLTuner &tuner) : _tuner(tuner) { } cl_int Interceptor::operator()(cl_command_queue command_queue, cl_kernel kernel, cl_uint work_dim, const size_t *gwo, const size_t *gws, const size_t *lws, cl_uint num_events_in_wait_list, const cl_event *event_wait_list, cl_event *event) { ARM_COMPUTE_ERROR_ON_MSG(event != nullptr, "Not supported"); ARM_COMPUTE_UNUSED(event); if(_tuner.kernel_event_is_set()) { // If the event is already set it means the kernel enqueue is sliced: given that we only time the first slice we can save time by skipping the other enqueues. return CL_SUCCESS; } cl_event tmp; cl_int retval = _tuner.real_clEnqueueNDRangeKernel(command_queue, kernel, work_dim, gwo, gws, lws, num_events_in_wait_list, event_wait_list, &tmp); // Set OpenCL event _tuner.set_cl_kernel_event(tmp); return retval; } } // namespace CLTuner::CLTuner(bool tune_new_kernels) : real_clEnqueueNDRangeKernel(nullptr), _lws_table(), _queue(), _queue_profiler(), _kernel_event(), _tune_new_kernels(tune_new_kernels) { } bool CLTuner::kernel_event_is_set() const { return _kernel_event() != nullptr; } void CLTuner::set_cl_kernel_event(cl_event kernel_event) { _kernel_event = kernel_event; } void CLTuner::set_tune_new_kernels(bool tune_new_kernels) { _tune_new_kernels = tune_new_kernels; } bool CLTuner::tune_new_kernels() const { return _tune_new_kernels; } void CLTuner::tune_kernel(ICLKernel &kernel) { // Get the configuration ID from the kernel const std::string &config_id = kernel.config_id(); // Check if we need to find the Optimal LWS. If config_id is equal to default_config_id, the kernel does not require to be tuned if(config_id != arm_compute::default_config_id) { auto p = _lws_table.find(config_id); if(p == _lws_table.end()) { if(_tune_new_kernels) { // Find the optimal LWS for the kernel cl::NDRange opt_lws = find_optimal_lws(kernel); // Insert the optimal LWS in the table add_lws_to_table(config_id, opt_lws); // Set Local-Workgroup-Size kernel.set_lws_hint(opt_lws); } } else { // Set Local-Workgroup-Size kernel.set_lws_hint(p->second); } } } void CLTuner::add_lws_to_table(const std::string &kernel_id, cl::NDRange optimal_lws) { _lws_table.emplace(kernel_id, optimal_lws); } cl::NDRange CLTuner::find_optimal_lws(ICLKernel &kernel) { if(real_clEnqueueNDRangeKernel == nullptr) { real_clEnqueueNDRangeKernel = CLSymbols::get().clEnqueueNDRangeKernel_ptr; // Get the default queue _queue = CLScheduler::get().queue(); // Check if we can use the OpenCL timer with the default queue cl_command_queue_properties props = _queue.getInfo(); if((props & CL_QUEUE_PROFILING_ENABLE) == 0) { // Set the queue for profiling _queue_profiler = cl::CommandQueue(CLScheduler::get().context(), props | CL_QUEUE_PROFILING_ENABLE); } else { _queue_profiler = _queue; } } // Start intercepting enqueues: CLSymbols::get().clEnqueueNDRangeKernel_ptr = Interceptor(*this); cl_ulong min_exec_time = std::numeric_limits::max(); cl::NDRange opt_lws = cl::NullRange; const int x_step = std::max(1, kernel.window().x().step()); const int y_step = std::max(1, kernel.window().y().step()); const int z_step = std::max(1, kernel.window().z().step()); const int x_end = kernel.window().x().end() - kernel.window().x().start() / x_step > 1 ? 16 : 1; const int y_end = kernel.window().y().end() - kernel.window().y().start() / y_step > 1 ? 16 : 1; const int z_end = kernel.window().z().end() - kernel.window().z().start() / z_step > 1 ? 8 : 1; // First run using the default LWS { cl::NDRange lws_test = cl::NullRange; kernel.set_lws_hint(lws_test); // Run the kernel kernel.run(kernel.window(), _queue_profiler); _queue_profiler.finish(); const cl_ulong start = _kernel_event.getProfilingInfo(); const cl_ulong end = _kernel_event.getProfilingInfo(); const cl_ulong diff = end - start; _kernel_event = nullptr; min_exec_time = diff; } for(int z = 1; z <= z_end; ++z) { for(int y = 1; y <= y_end; ++y) { for(int x = 1; x <= x_end; ++x) { cl::NDRange lws_test = cl::NDRange(x, y, z); const bool invalid_lws = (x * y * z > static_cast(kernel.get_max_workgroup_size())) || (x == 1 && y == 1 && z == 1); if(invalid_lws) { continue; } //Set the Local-Workgroup-Size kernel.set_lws_hint(lws_test); // Run the kernel kernel.run(kernel.window(), _queue_profiler); _queue_profiler.finish(); const cl_ulong start = _kernel_event.getProfilingInfo(); const cl_ulong end = _kernel_event.getProfilingInfo(); const cl_ulong diff = end - start; _kernel_event = nullptr; // Check the execution time if(diff < min_exec_time) { min_exec_time = diff; opt_lws = cl::NDRange(x, y, z); } } } } // Restore real function CLSymbols::get().clEnqueueNDRangeKernel_ptr = real_clEnqueueNDRangeKernel; return opt_lws; } void CLTuner::import_lws_table(const std::unordered_map &lws_table) { _lws_table.clear(); _lws_table = lws_table; } const std::unordered_map &CLTuner::lws_table() const { return _lws_table; } void CLTuner::load_from_file(const std::string &filename) { std::ifstream fs; fs.exceptions(std::ifstream::badbit); fs.open(filename, std::ios::in); if(!fs.is_open()) { ARM_COMPUTE_ERROR("Failed to open '%s' (%s [%d])", filename.c_str(), strerror(errno), errno); } std::string line; while(!std::getline(fs, line).fail()) { std::istringstream ss(line); std::string token; if(std::getline(ss, token, ';').fail()) { ARM_COMPUTE_ERROR("Malformed row '%s' in %s (Should be of the form 'kernel_id;lws[0];lws[1];lws[2]')", ss.str().c_str(), filename.c_str()); } std::string kernel_id = token; cl::NDRange lws(1, 1, 1); for(int i = 0; i < 3; i++) { if(std::getline(ss, token, ';').fail()) { ARM_COMPUTE_ERROR("Malformed row '%s' in %s (Should be of the form 'kernel_id;lws[0];lws[1];lws[2]')", ss.str().c_str(), filename.c_str()); } lws.get()[i] = support::cpp11::stoi(token); } // If all dimensions are 0: reset to NullRange (i.e nullptr) if(lws[0] == 0 && lws[1] == 0 && lws[2] == 0) { lws = cl::NullRange; } add_lws_to_table(kernel_id, lws); } fs.close(); } void CLTuner::save_to_file(const std::string &filename) const { std::ofstream fs; fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); fs.open(filename, std::ios::out); for(auto kernel_data : _lws_table) { fs << kernel_data.first << ";" << kernel_data.second[0] << ";" << kernel_data.second[1] << ";" << kernel_data.second[2] << std::endl; } fs.close(); }