/* * Copyright (c) 2016-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/runtime/CL/CLTensorAllocator.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/runtime/CL/CLMemoryGroup.h" #include "arm_compute/runtime/CL/CLScheduler.h" using namespace arm_compute; CLTensorAllocator::CLTensorAllocator(CLTensor *owner) : _associated_memory_group(nullptr), _buffer(), _mapping(nullptr), _owner(owner), _svm_memory() { } CLTensorAllocator::~CLTensorAllocator() { _buffer = cl::Buffer(); } uint8_t *CLTensorAllocator::data() { return _mapping; } const cl::Buffer &CLTensorAllocator::cl_data() const { return _buffer; } void *SVMMemory::allocate(cl_context context, size_t size, cl_svm_mem_flags flags, cl_uint alignment) { ARM_COMPUTE_ERROR_ON_NULLPTR(context); ARM_COMPUTE_ERROR_ON(size == 0); ARM_COMPUTE_ERROR_ON(_ptr != nullptr); ARM_COMPUTE_ERROR_ON(size > CL_DEVICE_MAX_MEM_ALLOC_SIZE); _ptr = clSVMAlloc(context, flags, size, alignment); if(_ptr != nullptr) { _size = size; _fine_grain = static_cast(flags & CL_MEM_SVM_FINE_GRAIN_BUFFER); } return _ptr; } void *CLTensorAllocator::svm_ptr() { return _svm_memory.ptr(); } void CLTensorAllocator::allocate() { if(_associated_memory_group == nullptr) { ARM_COMPUTE_ERROR_ON(_buffer.get() != nullptr); if(_svm_memory.allocate(CLScheduler::get().context()(), CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER, info().total_size(), 0) == nullptr) { // try at coarse grain svm memory _svm_memory.allocate(CLScheduler::get().context()(), CL_MEM_READ_WRITE, info().total_size(), 0); } if(_svm_memory.ptr() != nullptr) { _buffer = cl::Buffer(CLScheduler::get().context(), CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, info().total_size(), _svm_memory.ptr()); } else { _buffer = cl::Buffer(CLScheduler::get().context(), CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_WRITE, info().total_size()); } } else { _associated_memory_group->finalize_memory(_owner, reinterpret_cast(&_buffer()), info().total_size()); } info().set_is_resizable(false); } void CLTensorAllocator::free() { if(_associated_memory_group == nullptr) { _buffer = cl::Buffer(); if(_svm_memory.ptr() != nullptr) { clSVMFree(CLScheduler::get().context()(), _svm_memory.ptr()); } info().set_is_resizable(true); } } void CLTensorAllocator::set_associated_memory_group(CLMemoryGroup *associated_memory_group) { ARM_COMPUTE_ERROR_ON(associated_memory_group == nullptr); ARM_COMPUTE_ERROR_ON(_associated_memory_group != nullptr); ARM_COMPUTE_ERROR_ON(_buffer.get() != nullptr); _associated_memory_group = associated_memory_group; } uint8_t *CLTensorAllocator::lock() { ARM_COMPUTE_ERROR_ON(_mapping != nullptr); _mapping = map(CLScheduler::get().queue(), true); return _mapping; } void CLTensorAllocator::unlock() { ARM_COMPUTE_ERROR_ON(_mapping == nullptr); unmap(CLScheduler::get().queue(), _mapping); _mapping = nullptr; } uint8_t *CLTensorAllocator::map(cl::CommandQueue &q, bool blocking) { const bool svm_mem = _svm_memory.ptr() != nullptr; const bool fine_grain_svm = _svm_memory.fine_grain(); if(!svm_mem) { ARM_COMPUTE_ERROR_ON(_buffer.get() == nullptr); return static_cast(q.enqueueMapBuffer(_buffer, blocking ? CL_TRUE : CL_FALSE, CL_MAP_READ | CL_MAP_WRITE, 0, info().total_size())); } else if(!fine_grain_svm) { const cl_int ret = clEnqueueSVMMap(q(), blocking ? CL_TRUE : CL_FALSE, CL_MAP_READ | CL_MAP_WRITE, _svm_memory.ptr(), _svm_memory.size(), 0, nullptr, nullptr); ARM_COMPUTE_ERROR_ON(ret != CL_SUCCESS); if(ret == CL_SUCCESS) { return reinterpret_cast(_svm_memory.ptr()); } else { return nullptr; } } else { if(blocking) { clFinish(q()); } return reinterpret_cast(_svm_memory.ptr()); } } void CLTensorAllocator::unmap(cl::CommandQueue &q, uint8_t *mapping) { const bool svm_mem = _svm_memory.ptr() != nullptr; const bool fine_grain_svm = _svm_memory.fine_grain(); if(!svm_mem) { ARM_COMPUTE_ERROR_ON(_buffer.get() == nullptr); q.enqueueUnmapMemObject(_buffer, mapping); } else if(!fine_grain_svm) { clEnqueueSVMUnmap(q(), _svm_memory.ptr(), 0, nullptr, nullptr); } }