/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph/nodes/FullyConnectedLayer.h" #include "arm_compute/graph/Error.h" #include "arm_compute/graph/NodeContext.h" #include "arm_compute/graph/OperationRegistry.h" #include "support/ToolchainSupport.h" using namespace arm_compute::graph; namespace { TensorShape calculate_fullyconnected_layer_output_shape(const TensorShape &input_shape, unsigned int output_neurons) { // Note: Only 1D batch space is supported at the moment unsigned int batches = input_shape[1]; if(input_shape.num_dimensions() > 2) { batches = input_shape[3]; } return TensorShape(output_neurons, batches); } } // namespace std::unique_ptr FullyConnectedLayer::instantiate_node(GraphContext &ctx, ITensorObject *input, ITensorObject *output) { ARM_COMPUTE_ERROR_ON_UNALLOCATED_TENSOR_OBJECT(input, output); arm_compute::ITensor *in = input->tensor(); arm_compute::ITensor *out = output->tensor(); _target_hint = ctx.hints().target_hint(); if(_weights.tensor() == nullptr) { unsigned int num_weights = 1; unsigned int num_dimensions = in->info()->num_dimensions(); // Ignore the batch dimension if there is one: if(num_dimensions == 2 || num_dimensions == 4) { num_dimensions--; } for(unsigned int i = 0; i < num_dimensions; i++) { num_weights *= in->info()->dimension(i); } _weights.set_info(TensorInfo(TensorShape(num_weights, _num_neurons), in->info()->num_channels(), in->info()->data_type(), in->info()->fixed_point_position())); } if(_biases.tensor() == nullptr) { _biases.set_info(TensorInfo(TensorShape(_num_neurons), in->info()->num_channels(), in->info()->data_type(), in->info()->fixed_point_position())); } // Auto configure output arm_compute::auto_init_if_empty(*out->info(), calculate_fullyconnected_layer_output_shape(in->info()->tensor_shape(), _num_neurons), in->info()->num_channels(), in->info()->data_type(), in->info()->fixed_point_position()); bool weights_are_loaded = _weights.tensor() != nullptr; bool biases_are_loaded = _biases.tensor() != nullptr; // Create node context NodeContext node_ctx(OperationType::FullyConnectedLayer); node_ctx.set_target(_target_hint); node_ctx.add_input(in); node_ctx.add_input(_weights.set_target(_target_hint)); node_ctx.add_input(_biases.set_target(_target_hint)); node_ctx.add_output(out); // Configure operation auto func = OperationRegistry::get().find_operation(OperationType::FullyConnectedLayer, _target_hint)->configure(node_ctx); // Fill biases if(!weights_are_loaded) { _weights.allocate_and_fill_if_needed(); } if(!biases_are_loaded) { _biases.allocate_and_fill_if_needed(); } // Get function return func; }