/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph/nodes/ConvolutionLayer.h" #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h" #include "arm_compute/runtime/CL/functions/CLDirectConvolutionLayer.h" #include "arm_compute/runtime/IFunction.h" #include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h" #include "arm_compute/runtime/NEON/functions/NEDirectConvolutionLayer.h" #include "support/ToolchainSupport.h" #include "utils/GraphTypePrinter.h" #include "utils/TypePrinter.h" #include #include using namespace arm_compute::graph; namespace { /** Calculates the output shaped of the convolution layer * * @param[in] input_shape Input tensor shape * @param[in] weights_shape Weights shape * @param[in] conv_info Convolution information (padding, stride, etc.) * * @return The expected output tensor shape */ TensorShape calculate_convolution_layer_output_shape(const TensorShape &input_shape, const TensorShape &weights_shape, const PadStrideInfo &conv_info) { unsigned int output_width = 0; unsigned int output_height = 0; // Get output width and height std::tie(output_width, output_height) = arm_compute::scaled_dimensions(input_shape.x(), input_shape.y(), weights_shape.x(), weights_shape.y(), conv_info); // Create output shape TensorShape output_shape = input_shape; output_shape.set(0, output_width); output_shape.set(1, output_height); output_shape.set(2, weights_shape[3]); return output_shape; } // Instantiate GEMM based convolution layer template std::unique_ptr instantiate_function(arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info) { auto conv = arm_compute::support::cpp14::make_unique(); conv->configure( dynamic_cast(input), dynamic_cast(weights), dynamic_cast(biases), dynamic_cast(output), conv_info, weights_info); return std::move(conv); } // Instantiate direct convolution layer template std::unique_ptr instantiate_direct_function(arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const PadStrideInfo &conv_info) { auto conv = arm_compute::support::cpp14::make_unique(); conv->configure( dynamic_cast(input), dynamic_cast(weights), dynamic_cast(biases), dynamic_cast(output), conv_info); return std::move(conv); } template std::unique_ptr instantiate(arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, ConvolutionMethodHint conv_method); template <> std::unique_ptr instantiate(arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, ConvolutionMethodHint conv_method) { if(conv_method == ConvolutionMethodHint::GEMM) { return instantiate_function(input, weights, biases, output, conv_info, weights_info); } else { return instantiate_direct_function(input, weights, biases, output, conv_info); } } template <> std::unique_ptr instantiate(arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, ConvolutionMethodHint conv_method) { if(conv_method == ConvolutionMethodHint::GEMM) { return instantiate_function(input, weights, biases, output, conv_info, weights_info); } else { return instantiate_direct_function(input, weights, biases, output, conv_info); } } } // namespace /** Grouped Convolution function */ class GroupedConvolutionFunction final : public arm_compute::IFunction { public: /** Default Constructor */ GroupedConvolutionFunction() : _convolutions() { } /** Default Destructor */ ~GroupedConvolutionFunction() final = default; /** Prevent instances from being copy constructed */ GroupedConvolutionFunction(const GroupedConvolutionFunction &) = delete; /** Prevent instances from being copy assigned */ GroupedConvolutionFunction &operator=(const GroupedConvolutionFunction &) = delete; /** Allow instances to be move constructed */ GroupedConvolutionFunction(GroupedConvolutionFunction &&) noexcept = default; /** Allow instances to be move assigned */ GroupedConvolutionFunction &operator=(GroupedConvolutionFunction &&) noexcept = default; /** Adds a convolution * * @param convolution Convolution function to add */ void add_convolution_function(std::unique_ptr convolution) { _convolutions.emplace_back(std::move(convolution)); } // Inherited methods overriden: void run() override { for(auto &c : _convolutions) { c->run(); } } private: std::vector> _convolutions; }; std::unique_ptr ConvolutionLayer::instantiate_node(GraphContext &ctx, ITensorObject *input, ITensorObject *output) { ARM_COMPUTE_ERROR_ON(input == nullptr || input->tensor() == nullptr); ARM_COMPUTE_ERROR_ON(output == nullptr || output->tensor() == nullptr); arm_compute::ITensor *in = input->tensor(); arm_compute::ITensor *out = output->tensor(); // Set weights and biases info if(_weights.tensor() == nullptr) { _weights.set_info(TensorInfo(TensorShape(_conv_width, _conv_height, in->info()->dimension(2) / _num_groups, _ofm), in->info()->num_channels(), in->info()->data_type(), in->info()->fixed_point_position())); } if(_biases.tensor() == nullptr) { _biases.set_info(TensorInfo(TensorShape(_ofm), in->info()->num_channels(), in->info()->data_type(), in->info()->fixed_point_position())); } std::unique_ptr func; _target_hint = ctx.hints().target_hint(); const ConvolutionMethodHint conv_method_hint = ctx.hints().convolution_method_hint(); // Check if the weights and biases are loaded bool weights_are_loaded = _weights.tensor() != nullptr; bool biases_are_loaded = _weights.tensor() != nullptr; // Set bias and weights target _weights.set_target(_target_hint); _biases.set_target(_target_hint); // Calculate output shape TensorShape output_shape = calculate_convolution_layer_output_shape(in->info()->tensor_shape(), _weights.info().tensor_shape(), _conv_info); // Output auto inizialitation if not yet initialized arm_compute::auto_init_if_empty(*out->info(), output_shape, 1, in->info()->data_type(), in->info()->fixed_point_position()); // Create appropriate convolution function if(_num_groups == 1) { func = instantiate_convolution(in, out, conv_method_hint); ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating CLConvolutionLayer"); } else { func = instantiate_grouped_convolution(in, out, conv_method_hint); ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEConvolutionLayer"); } // Fill weights if(!weights_are_loaded) { _weights.allocate_and_fill_if_needed(); } // Fill biases if(!biases_are_loaded) { _biases.allocate_and_fill_if_needed(); } ARM_COMPUTE_LOG_GRAPH_INFO(" Data Type: " << in->info()->data_type() << " Input Shape: " << in->info()->tensor_shape() << " Weights shape: " << _weights.info().tensor_shape() << " Biases Shape: " << _biases.info().tensor_shape() << " Output Shape: " << out->info()->tensor_shape() << " PadStrideInfo: " << _conv_info << " Groups: " << _num_groups << " WeightsInfo: " << _weights_info << std::endl); return func; } std::unique_ptr ConvolutionLayer::instantiate_convolution(ITensor *input, ITensor *output, ConvolutionMethodHint conv_method_hint) { std::unique_ptr func; if(_target_hint == TargetHint::OPENCL) { func = instantiate(input, _weights.tensor(), _biases.tensor(), output, _conv_info, _weights_info, conv_method_hint); } else { func = instantiate(input, _weights.tensor(), _biases.tensor(), output, _conv_info, _weights_info, conv_method_hint); } return func; } std::unique_ptr ConvolutionLayer::instantiate_grouped_convolution(ITensor *input, ITensor *output, ConvolutionMethodHint conv_method_hint) { // Get tensor shapes TensorShape input_shape = input->info()->tensor_shape(); TensorShape output_shape = output->info()->tensor_shape(); TensorShape weights_shape = _weights.info().tensor_shape(); TensorShape biases_shape = _biases.info().tensor_shape(); ARM_COMPUTE_ERROR_ON_MSG((input_shape.z() % _num_groups) != 0, "Input depth not multiple of the number of groups!"); ARM_COMPUTE_ERROR_ON_MSG((output_shape.z() % _num_groups) != 0, "Output depth not multiple of the number of groups!"); ARM_COMPUTE_ERROR_ON_MSG((weights_shape[3] % _num_groups) != 0, "Number of kernels not multiple of the number of groups!"); ARM_COMPUTE_ERROR_ON_MSG((biases_shape.x() % _num_groups) != 0, "Biases not multiple of the number of groups!"); // Create a grouped convolution function auto grouped_conv = arm_compute::support::cpp14::make_unique(); // Create sub-tensors vectors _is = arm_compute::support::cpp14::make_unique(_num_groups); _os = arm_compute::support::cpp14::make_unique(_num_groups); _ws = arm_compute::support::cpp14::make_unique(_num_groups); _bs = arm_compute::support::cpp14::make_unique(_num_groups); // Calculate sub-tensor splits const int input_split = input_shape.z() / _num_groups; const int output_split = output_shape.z() / _num_groups; const int weights_split = weights_shape[3] / _num_groups; const int biases_split = biases_shape.x() / _num_groups; // Calculate sub-tensor shapes input_shape.set(2, input_split); output_shape.set(2, output_split); weights_shape.set(3, weights_split); biases_shape.set(0, biases_split); // Configure sub-tensors for(int i = 0; i < static_cast(_num_groups); ++i) { // Create convolution function std::unique_ptr func; // Calculate sub-tensors starting coordinates Coordinates input_coord(0, 0, input_split * i); Coordinates output_coord(0, 0, output_split * i); Coordinates weights_coord(0, 0, 0, weights_split * i); Coordinates biases_coord(biases_split * i); // Create sub-tensors for input, output, weights and bias auto hint_to_use = (_target_hint == TargetHint::OPENCL) ? TargetHint::OPENCL : TargetHint::NEON; _is[i] = SubTensor(input, input_shape, input_coord, hint_to_use); _os[i] = SubTensor(output, output_shape, output_coord, hint_to_use); _ws[i] = SubTensor(_weights.tensor(), weights_shape, weights_coord, hint_to_use); _bs[i] = SubTensor(_biases.tensor(), biases_shape, biases_coord, hint_to_use); // Instantiate convolution function if(_target_hint == TargetHint::OPENCL) { func = instantiate(_is[i].tensor(), _ws[i].tensor(), _bs[i].tensor(), _os[i].tensor(), _conv_info, _weights_info, conv_method_hint); } else { func = instantiate(_is[i].tensor(), _ws[i].tensor(), _bs[i].tensor(), _os[i].tensor(), _conv_info, _weights_info, conv_method_hint); } // Add convolution function to the list of convolutions for the grouped convolution grouped_conv->add_convolution_function(std::move(func)); } return std::move(grouped_conv); }