/* * Copyright (c) 2018 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/graph/algorithms/TopologicalSort.h" #include "arm_compute/graph/Graph.h" #include "arm_compute/core/utils/misc/Iterable.h" #include #include namespace arm_compute { namespace graph { namespace detail { /** Checks if all the input dependencies of a node have been visited * * @param[in] node Node to check * @param[in] visited Vector that contains the visited information * * @return True if all inputs dependencies have been visited else false */ inline bool all_inputs_are_visited(const INode *node, const std::vector &visited) { ARM_COMPUTE_ERROR_ON(node == nullptr); const Graph *graph = node->graph(); ARM_COMPUTE_ERROR_ON(graph == nullptr); bool are_all_visited = true; for(const auto &input_edge_id : node->input_edges()) { if(input_edge_id != EmptyNodeID) { const Edge *input_edge = graph->edge(input_edge_id); ARM_COMPUTE_ERROR_ON(input_edge == nullptr); ARM_COMPUTE_ERROR_ON(input_edge->producer() == nullptr); if(!visited[input_edge->producer_id()]) { are_all_visited = false; break; } } } return are_all_visited; } } // namespace detail std::vector bfs(Graph &g) { std::vector bfs_order_vector; // Created visited vector std::vector visited(g.nodes().size(), false); // Create BFS queue std::list queue; // Push inputs and mark as visited for(auto &input : g.nodes(NodeType::Input)) { if(input != EmptyNodeID) { visited[input] = true; queue.push_back(input); } } // Push const nodes and mark as visited for(auto &const_node : g.nodes(NodeType::Const)) { if(const_node != EmptyNodeID) { visited[const_node] = true; queue.push_back(const_node); } } // Iterate over vector and edges while(!queue.empty()) { // Dequeue a node from queue and process NodeID n = queue.front(); bfs_order_vector.push_back(n); queue.pop_front(); const INode *node = g.node(n); ARM_COMPUTE_ERROR_ON(node == nullptr); for(const auto &eid : node->output_edges()) { const Edge *e = g.edge(eid); ARM_COMPUTE_ERROR_ON(e == nullptr); if(!visited[e->consumer_id()] && detail::all_inputs_are_visited(e->consumer(), visited)) { visited[e->consumer_id()] = true; queue.push_back(e->consumer_id()); } } } return bfs_order_vector; } std::vector dfs(Graph &g) { std::vector dfs_order_vector; // Created visited vector std::vector visited(g.nodes().size(), false); // Create DFS stack std::stack stack; // Push inputs and mark as visited for(auto &input : g.nodes(NodeType::Input)) { if(input != EmptyNodeID) { visited[input] = true; stack.push(input); } } // Push const nodes and mark as visited for(auto &const_node : g.nodes(NodeType::Const)) { if(const_node != EmptyNodeID) { visited[const_node] = true; stack.push(const_node); } } // Iterate over vector and edges while(!stack.empty()) { // Pop a node from stack and process NodeID n = stack.top(); dfs_order_vector.push_back(n); stack.pop(); // Mark node as visited if(!visited[n]) { visited[n] = true; } const INode *node = g.node(n); ARM_COMPUTE_ERROR_ON(node == nullptr); // Reverse iterate to push branches from right to left and pop on the opposite order for(const auto &eid : arm_compute::utils::iterable::reverse_iterate(node->output_edges())) { const Edge *e = g.edge(eid); ARM_COMPUTE_ERROR_ON(e == nullptr); if(!visited[e->consumer_id()] && detail::all_inputs_are_visited(e->consumer(), visited)) { stack.push(e->consumer_id()); } } } return dfs_order_vector; } } // namespace graph } // namespace arm_compute