/* * Copyright (c) 2017-2021, 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/gpu/cl/operators/ClGemmConv2d.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/PixelValue.h" #include "arm_compute/core/Size2D.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "arm_compute/core/Validate.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "src/common/utils/Log.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/MemoryHelpers.h" #include "src/gpu/cl/kernels/ClActivationKernel.h" #include "src/gpu/cl/kernels/ClCol2ImKernel.h" #include "src/gpu/cl/kernels/ClIm2ColKernel.h" #include "src/gpu/cl/kernels/ClWeightsReshapeKernel.h" #include "src/gpu/cl/operators/ClGemm.h" #include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h" #include "src/gpu/cl/utils/ClAuxTensorHandler.h" #include "support/Cast.h" namespace arm_compute { using namespace experimental; using namespace misc::shape_calculator; using namespace utils::cast; namespace opencl { ClGemmConv2d::ClGemmConv2d() : _weights_reshape_kernel(nullptr), _im2col_kernel(nullptr), _mm_gemm(nullptr), _mm_gemmlowp(nullptr), _col2im_kernel(nullptr), _activation_kernel(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _fuse_activation(true), _append_bias(false), _is_prepared(false), _aux_mem(AuxTensorIdx::Count) { } ClGemmConv2d::~ClGemmConv2d() = default; void ClGemmConv2d::configure_mm(const ClCompileContext &compile_context, const ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst, const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights); ARM_COMPUTE_ERROR_THROW_ON( validate_mm(src, weights, biases, dst, gemmlowp_output_stage, gemm_3d_depth, _skip_im2col, act_info)); const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped false, // is_b_reshaped true, // reshape_b_only_on_first_run gemm_3d_depth, // depth_output_gemm3d _skip_im2col, // reinterpret_input_as_3d false, // retain_internal_weights gemmlowp_output_stage, // gemmlowp_output_stage false, // fast_math false, // fp_mixed_precision true, // broadcast_bias act_info // activation_info ); TensorInfo tmp_src{*src}; if (_is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = src->quantization_info(); const QuantizationInfo weights_quantization_info = weights->quantization_info(); tmp_src.set_quantization_info( QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset)); weights->set_quantization_info( QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset)); _mm_gemmlowp = std::make_unique(); _mm_gemmlowp->configure(compile_context, &tmp_src, weights, biases, dst, gemm_info); // Revert back QuantizatioInfo as weights could be used in other convolution layers weights->set_quantization_info(weights_quantization_info); auto mm_mem_req = _mm_gemmlowp->workspace(); for (unsigned int cont = 0; cont < mm_mem_req.size(); ++cont) { _aux_mem[cont] = mm_mem_req[cont]; } } else { // Configure matrix multiply function _mm_gemm = std::make_unique(); _mm_gemm->configure(compile_context, &tmp_src, weights, biases, dst, 1.0f, 1.0f, gemm_info); auto mm_mem_req = _mm_gemm->workspace(); for (unsigned int cont = 0; cont < mm_mem_req.size(); ++cont) { _aux_mem[cont] = mm_mem_req[cont]; } } } Status ClGemmConv2d::validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const GEMMLowpOutputStageInfo &gemmlowp_output_stage, int gemm_3d_depth, bool skip_im2col, const ActivationLayerInfo &act_info) { const bool is_quantized = is_data_type_quantized_asymmetric(src->data_type()); const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped false, // is_b_reshaped true, // reshape_b_only_on_first_run gemm_3d_depth, // depth_output_gemm3d skip_im2col, // reinterpret_input_as_3d false, // retain_internal_weights gemmlowp_output_stage, // gemmlowp_output_stage false, // fast_math false, // fp_mixed_precision true, // broadcast_bias act_info // activation_info ); if (is_quantized) { // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() // Extract and negate input and weights offset const QuantizationInfo input_quantization_info = src->quantization_info(); const QuantizationInfo weights_quantization_info = weights->quantization_info(); std::unique_ptr src_qa = src->clone(); std::unique_ptr weights_qa = weights->clone(); src_qa->set_quantization_info( QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset)); weights_qa->set_quantization_info( QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset)); // Perform validation step on GEMMLowp return ClGemmLowpMatrixMultiplyCore::validate(src_qa.get(), weights_qa.get(), biases, dst, gemm_info); } else { // Perform validation step on Matrix multiply function return ClGemm::validate(src, weights, biases, dst, 1.0f, 1.0f, gemm_info); } } void ClGemmConv2d::configure(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst, const Conv2dInfo &conv2d_info, const WeightsInfo &weights_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst); ARM_COMPUTE_ERROR_THROW_ON(ClGemmConv2d::validate(src, weights, biases, dst, conv2d_info, weights_info)); ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv2d_info, weights_info); const DataType data_type = src->data_type(); const DataLayout data_layout = src->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); const unsigned int kernel_width = weights->dimension(idx_width); const unsigned int kernel_height = weights->dimension(idx_height); const unsigned int num_kernels = weights->dimension(idx_kernels); const UniformQuantizationInfo iq_info = src->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->quantization_info().uniform(); _is_prepared = weights_info.retain_internal_weights(); _is_quantized = is_data_type_quantized_asymmetric(src->data_type()); _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv2d_info.conv_info.stride().first == 1 && conv2d_info.conv_info.stride().second == 1); _skip_col2im = data_layout == DataLayout::NHWC; // Only for quantize there are few cases where we cannot fuse the activation function in GEMM _fuse_activation = true; const ITensorInfo *gemm_input_to_use = src; ITensorInfo *gemm_output_to_use = dst; // Get parameters from conv_info unsigned int stride_x = 0; unsigned int stride_y = 0; std::tie(stride_x, stride_y) = conv2d_info.conv_info.stride(); // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width, kernel_height, conv2d_info.conv_info, conv2d_info.dilation); unsigned int mat_weights_cols = num_kernels / conv2d_info.num_groups; ITensorInfo *biases_to_use = biases; _append_bias = false; _weights_reshape_kernel = std::make_unique(); if (conv2d_info.num_groups != 1 && biases != nullptr) { // num_groups != 1 can only be for NCHW // Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor biases_to_use = nullptr; _append_bias = true; _weights_reshape_kernel->configure(compile_context, weights, biases, &_weights_reshaped, conv2d_info.num_groups); } else { _weights_reshape_kernel->configure(compile_context, weights, nullptr, &_weights_reshaped, conv2d_info.num_groups); } // Create tensor to store im2col reshaped inputs if (!_skip_im2col) { // Configure and tune im2col. im2col output shape is auto-initialized _im2col_kernel = std::make_unique(); // Set the GPU target for im2col _im2col_kernel->set_target(CLScheduler::get().target()); _im2col_kernel->configure(compile_context, src, &_im2col_output, Size2D(kernel_width, kernel_height), conv2d_info.conv_info, _append_bias, conv2d_info.dilation, conv2d_info.num_groups); // Set quantization info _im2col_output.set_quantization_info(src->quantization_info()); CLScheduler::get().tune_kernel_static(*_im2col_kernel); // Update GEMM input gemm_input_to_use = &_im2col_output; } // Create GEMM output tensor if (!_skip_col2im) { TensorShape shape_gemm; // If we cannot skip col2im it means we run im2col as well shape_gemm = _im2col_output.tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, conv_w * conv_h); _gemm_output = TensorInfo(shape_gemm, 1, data_type); _gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout()); // Update GEMM output gemm_output_to_use = &_gemm_output; } GEMMLowpOutputStageInfo gemmlowp_output_stage; gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; gemmlowp_output_stage.gemmlowp_offset = 0; // Configure output stage for quantized case if (_is_quantized) { const auto output_quant_info = (dst->total_size() == 0) ? iq_info : oq_info; const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->data_type()); const unsigned int num_filters = (is_quantized_per_channel) ? num_kernels : 1; gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel; gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters); gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters); quantization::compute_quantized_multipliers_and_shifts(src, weights, dst, gemmlowp_output_stage.gemmlowp_multipliers.data(), gemmlowp_output_stage.gemmlowp_shifts.data()); gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0]; gemmlowp_output_stage.gemmlowp_shift = gemmlowp_output_stage.gemmlowp_shifts[0]; PixelValue min_val{}; PixelValue max_val{}; std::tie(min_val, max_val) = get_min_max(dst->data_type()); auto min_activation = min_val.get(); auto max_activation = max_val.get(); const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU}; if (conv2d_info.act_info.enabled()) { if (supported_acts.count(conv2d_info.act_info.activation()) != 0) { std::tie(min_activation, max_activation) = get_quantized_activation_min_max(conv2d_info.act_info, data_type, output_quant_info); } else { _fuse_activation = false; } } // Set the GEMMLowp output stage info gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset; gemmlowp_output_stage.gemmlowp_min_bound = min_activation; gemmlowp_output_stage.gemmlowp_max_bound = max_activation; } // Configure and tune GEMM // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0; configure_mm(compile_context, gemm_input_to_use, &_weights_reshaped, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, conv2d_info.act_info); if (!_skip_col2im) { // Set the GPU target for col2im _col2im_kernel = std::make_unique(); _col2im_kernel->set_target(CLScheduler::get().target()); // Configure and tune Col2Im _col2im_kernel->configure(compile_context, gemm_output_to_use, dst, Size2D(conv_w, conv_h), conv2d_info.num_groups); CLScheduler::get().tune_kernel_static(*_col2im_kernel.get()); } ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h), "Output shape does not match the expected one"); if (!_fuse_activation) { _activation_kernel = std::make_unique(); _activation_kernel->configure(compile_context, dst, nullptr, conv2d_info.act_info); } _aux_mem[Im2ColOutput] = MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size()); _aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped), MemoryLifetime::Persistent, _weights_reshaped.total_size()); _aux_mem[GemmOutput] = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size()); } Status ClGemmConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const Conv2dInfo &conv2d_info, const WeightsInfo &weights_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst); ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->data_type()); if (!is_quantized_per_channel) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights); ARM_COMPUTE_RETURN_ERROR_ON_MSG((conv2d_info.num_groups != 1) && (src->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((conv2d_info.num_groups != 1) && (src->data_type() == DataType::QASYMM8), "Grouping (num_groups != 1) is not supported with QASYMM8"); ARM_COMPUTE_RETURN_ERROR_ON(((src->dimension(2) / weights->dimension(2)) != conv2d_info.num_groups) && (src->data_layout() == DataLayout::NCHW)); const DataLayout data_layout = src->data_layout(); const DataType data_type = src->data_type(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); const unsigned int kernel_width = weights->dimension(idx_width); const unsigned int kernel_height = weights->dimension(idx_height); const unsigned int num_kernels = weights->dimension(idx_kernels); TensorInfo im2col_reshaped_info{}; TensorInfo info_gemm{}; TensorInfo weights_reshaped_info{}; const ITensorInfo *gemm_input_to_use = src; const ITensorInfo *gemm_output_to_use = dst; const ITensorInfo *weights_to_use = weights; const bool is_quantized = is_data_type_quantized_asymmetric(data_type); const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv2d_info.conv_info.stride().first == 1 && conv2d_info.conv_info.stride().second == 1); const bool skip_col2im = data_layout == DataLayout::NHWC; bool fuse_activation = true; ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * conv2d_info.num_groups) != src->dimension(idx_channel)); ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); // Validate biases if (biases != nullptr) { if (is_quantized) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases); } ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); } if (conv2d_info.act_info.enabled()) { ARM_COMPUTE_ERROR_ON(conv2d_info.act_info.b() > conv2d_info.act_info.a()); } // Get convolved dimensions unsigned int conv_w = 0; unsigned int conv_h = 0; std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width, kernel_height, conv2d_info.conv_info, conv2d_info.dilation); unsigned int mat_weights_cols = num_kernels / conv2d_info.num_groups; const ITensorInfo *biases_to_use = biases; bool append_bias = false; if (conv2d_info.num_groups != 1 && biases != nullptr) { // num_groups != 1 can only be for NCHW // Since it is missing an utility function to reshape the biases, we append the biases into the weights tensor biases_to_use = nullptr; append_bias = true; weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, true, conv2d_info.num_groups), 1, data_type); } else { weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, false, conv2d_info.num_groups), 1, data_type); } weights_to_use = &weights_reshaped_info; if (!skip_im2col) { const Size2D kernel_dims(kernel_width, kernel_height); // Output tensor auto initialization if not yet initialized TensorShape expected_output_shape = compute_im2col_conv_shape(src, kernel_dims, conv2d_info.conv_info, append_bias, conv2d_info.dilation, conv2d_info.num_groups == 1, conv2d_info.num_groups); auto_init_if_empty(im2col_reshaped_info, src->clone()->set_tensor_shape(expected_output_shape)); ARM_COMPUTE_RETURN_ON_ERROR( opencl::kernels::ClIm2ColKernel::validate(src, &im2col_reshaped_info, kernel_dims, conv2d_info.conv_info, append_bias, conv2d_info.dilation, conv2d_info.num_groups)); gemm_input_to_use = &im2col_reshaped_info; } // Create GEMM output tensor if (!skip_col2im) { TensorShape shape_gemm; shape_gemm = gemm_input_to_use->tensor_shape(); shape_gemm.set(0, mat_weights_cols); shape_gemm.set(1, conv_w * conv_h); info_gemm = TensorInfo(shape_gemm, 1, data_type); info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout()); gemm_output_to_use = &info_gemm; } GEMMLowpOutputStageInfo gemmlowp_output_stage; gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; gemmlowp_output_stage.gemmlowp_offset = 0; gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel; if (is_quantized) { const UniformQuantizationInfo iq_info = src->quantization_info().uniform(); const UniformQuantizationInfo oq_info = dst->quantization_info().uniform(); const auto output_quant_info = (dst->total_size() == 0) ? iq_info : oq_info; const unsigned int num_filters = (is_quantized_per_channel) ? num_kernels : 1; gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters); gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters); quantization::compute_quantized_multipliers_and_shifts(src, weights, dst, gemmlowp_output_stage.gemmlowp_multipliers.data(), gemmlowp_output_stage.gemmlowp_shifts.data()); gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0]; gemmlowp_output_stage.gemmlowp_shift = gemmlowp_output_stage.gemmlowp_shifts[0]; int min_activation = 0; int max_activation = 0; const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU}; if (conv2d_info.act_info.enabled()) { if (supported_acts.count(conv2d_info.act_info.activation()) != 0) { std::tie(min_activation, max_activation) = get_quantized_activation_min_max(conv2d_info.act_info, data_type, output_quant_info); } else { fuse_activation = false; } } // Set the GEMMLowp output stage info gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset; gemmlowp_output_stage.gemmlowp_min_bound = min_activation; gemmlowp_output_stage.gemmlowp_max_bound = max_activation; } // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0; ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, skip_im2col, conv2d_info.act_info)); // Validate Col2Im if (!skip_col2im) { ARM_COMPUTE_RETURN_ON_ERROR( kernels::ClCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h), conv2d_info.num_groups)); } // Validate Activation Layer if (!fuse_activation) { ARM_COMPUTE_RETURN_ON_ERROR(kernels::ClActivationKernel::validate(dst, nullptr, conv2d_info.act_info)); } return Status{}; } void ClGemmConv2d::run(ITensorPack &tensors) { prepare(tensors); auto src = tensors.get_const_tensor(ACL_SRC_0); auto biases = tensors.get_const_tensor(ACL_SRC_2); auto dst = tensors.get_tensor(ACL_DST); auto gemm_input_to_use = src; auto gemm_output_to_use = dst; CLAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false); CLAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false); CLAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false); // Run im2col if (!_skip_im2col) { ITensorPack pack = {{TensorType::ACL_SRC, src}, {TensorType::ACL_DST, im2col_output.get()}}; CLScheduler::get().enqueue_op(*_im2col_kernel, pack, false); gemm_input_to_use = im2col_output.get(); } if (!_skip_col2im) { gemm_output_to_use = gemm_output.get(); } ITensorPack pack_mm = tensors; pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use); pack_mm.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get()); if (!_append_bias) { pack_mm.add_const_tensor(TensorType::ACL_SRC_2, biases); } pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use); // Runs ClGemm or ClGemmLowpMatrixMultiplyCore functions if (_is_quantized) { // Run gemmlowp _mm_gemmlowp->run(pack_mm); } else { // Run gemm _mm_gemm->run(pack_mm); } // Reshape output matrix if (!_skip_col2im) { ITensorPack pack = {{TensorType::ACL_SRC, gemm_output_to_use}, {TensorType::ACL_DST, dst}}; CLScheduler::get().enqueue_op(*_col2im_kernel.get(), pack, false); } //Run Activation Layer if we cannot fuse in GEMM if (!_fuse_activation) { ITensorPack pack = {{TensorType::ACL_SRC, dst}, {TensorType::ACL_DST, dst}}; CLScheduler::get().enqueue_op(*_activation_kernel.get(), pack, false); } } void ClGemmConv2d::prepare(ITensorPack &tensors) { if (!_is_prepared) { // Run weights reshaping and mark original weights tensor as unused ICLTensor *weights_reshaped_p = utils::cast::polymorphic_downcast(tensors.get_tensor(offset_int_vec(WeightsReshaped))); CLAuxTensorHandler weights_reshaped(_weights_reshaped, *weights_reshaped_p); auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1); ITensorPack pack = {{TensorType::ACL_SRC, weights}, {TensorType::ACL_DST, weights_reshaped.get()}}; if (_append_bias) { const auto biases = tensors.get_const_tensor(TensorType::ACL_SRC_2); pack.add_const_tensor(TensorType::ACL_BIAS, biases); } CLScheduler::get().enqueue_op(*_weights_reshape_kernel.get(), pack, true); tensors.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get()); // Prepare GEMM _is_quantized ? _mm_gemmlowp->prepare(tensors) : _mm_gemm->prepare(tensors); _is_prepared = true; } } experimental::MemoryRequirements ClGemmConv2d::workspace() const { return _aux_mem; } } // namespace opencl } // namespace arm_compute