/* * Copyright (c) 2019-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/gpu/cl/kernels/gemm/ClGemmHelpers.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include namespace arm_compute { namespace opencl { namespace kernels { namespace gemm { std::pair configure_lhs_rhs_info(unsigned int m, unsigned int n, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool lhs_interleave, bool rhs_interleave, bool lhs_transpose, bool rhs_transpose, bool export_to_cl_image) { ARM_COMPUTE_ERROR_ON(m0 == 0 || n0 == 0); ARM_COMPUTE_ERROR_ON(v0 == 0); v0 = std::max(std::min(static_cast(m / m0), static_cast(v0)), static_cast(1)); if (h0 == 0) { // When h0 is 0, we should take the maximum H0 possible h0 = std::max(n / n0, 1U); } else { h0 = std::max(std::min(static_cast(n / n0), static_cast(h0)), static_cast(1)); } const GEMMLHSMatrixInfo lhs_info(m0, k0, v0, lhs_transpose, lhs_interleave); const GEMMRHSMatrixInfo rhs_info(n0, k0, h0, rhs_transpose, rhs_interleave, export_to_cl_image); return std::make_pair(lhs_info, rhs_info); } std::pair select_lhs_rhs_info(std::pair info_img, std::pair info_buf, unsigned int n, unsigned int k, unsigned int b, DataType data_type) { ARM_COMPUTE_ERROR_ON_MSG(info_buf.second.export_to_cl_image == true, "The fallback GeMM configuration cannot have export_to_cl_image = true"); const TensorInfo tensor_rhs_info(TensorShape(n, k, b), 1, data_type); const TensorShape shape = misc::shape_calculator::compute_rhs_reshaped_shape(tensor_rhs_info, info_img.second); const TensorInfo tensor_reshaped_info(shape, 1, data_type); if (bool(validate_image2d_support_on_rhs(tensor_reshaped_info, info_img.second))) { return info_img; } else { return info_buf; } } void update_padding_for_cl_image(ITensorInfo *tensor) { constexpr unsigned int num_floats_per_pixel = 4; const unsigned int stride_y_in_elements = tensor->strides_in_bytes()[1] / tensor->element_size(); const unsigned int pixel_alignment = get_cl_image_pitch_alignment(CLKernelLibrary::get().get_device()); ARM_COMPUTE_ERROR_ON_MSG(pixel_alignment == 0, "Cannot retrieve cl_image pitch alignment"); if (pixel_alignment == 0) { return; } const unsigned int row_pitch_alignment = pixel_alignment * num_floats_per_pixel; const unsigned int round_up_width = ((stride_y_in_elements + row_pitch_alignment - 1) / row_pitch_alignment) * row_pitch_alignment; const unsigned int padding = round_up_width - stride_y_in_elements; tensor->extend_padding(PaddingSize(0, tensor->padding().right + padding, 0, 0)); } Status validate_image2d_support_on_rhs(const ITensorInfo &tensor_reshaped_info, const GEMMRHSMatrixInfo &rhs_info) { if (rhs_info.export_to_cl_image) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 == 2) || (rhs_info.n0 == 3)) && rhs_info.transpose == false, "Export to cl_image only supported with n0 = 4, 8 or 16"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.k0 == 2) || (rhs_info.k0 == 3)) && rhs_info.transpose == true, "Export to cl_image only supported with k0 = 4, 8 or 16"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(&tensor_reshaped_info, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_MSG( !image2d_from_buffer_supported(CLKernelLibrary::get().get_device()), "The extension cl_khr_image2d_from_buffer is not supported on the target platform"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(get_cl_image_pitch_alignment(CLKernelLibrary::get().get_device()) == 0, "Impossible to retrieve the cl_image pitch alignment"); // Check the width and height of the output tensor. // Since we cannot create a 3d image from a buffer, the third dimension is collapsed on the second dimension const size_t max_image_w = CLKernelLibrary::get().get_device().getInfo(); const size_t max_image_h = CLKernelLibrary::get().get_device().getInfo(); ARM_COMPUTE_RETURN_ERROR_ON_MSG(tensor_reshaped_info.tensor_shape()[0] > max_image_w * 4, "Not supported width for cl_image"); ARM_COMPUTE_RETURN_ERROR_ON_MSG( tensor_reshaped_info.tensor_shape()[1] * tensor_reshaped_info.tensor_shape()[2] > max_image_h, "Not supported height for cl_image"); } return Status{}; } bool is_mmul_kernel_preferred(const unsigned int m, const unsigned int n, const unsigned int k, const unsigned int b, const DataType data_type, unsigned int &best_m0, unsigned int &best_n0) { ARM_COMPUTE_UNUSED(n, k, b, data_type); const unsigned int mmul_k0 = 4; best_m0 = 4; best_n0 = 4; const unsigned int ceil_to_multiple_m_m0 = ceil_to_multiple(m, best_m0); const unsigned int m_div_m0 = ceil_to_multiple_m_m0 / best_m0; const unsigned int ceil_to_multiple_m_div_m0_mmul_k0 = ceil_to_multiple(m_div_m0, mmul_k0); const unsigned int gws_y = ceil_to_multiple_m_div_m0_mmul_k0 / mmul_k0; return ((k % mmul_k0) == 0) && (gws_y > 4); } std::pair find_lhs_rhs_info(const GeMMConfigsMatrix &configs, unsigned int m, unsigned int n, unsigned int k, unsigned int b) { size_t min_acc = std::numeric_limits::max(); size_t min_idx = 0; ARM_COMPUTE_ERROR_ON(configs.size() == 0); const size_t num_rows = configs.size(); const size_t num_cols = configs[0].size(); ARM_COMPUTE_ERROR_ON_MSG(num_cols != 14U, "The entry should have 14 integer values representing: M, N, K, B, M0, " "N0. K0, V0, H0, INT_LHS, INT_RHS, TRA_LHS, TRA_RHS, IMG_RHS"); ARM_COMPUTE_UNUSED(num_cols); // Find nearest GeMM workload // Note: the workload does not depend on the K dimension for (size_t y = 0; y < num_rows; ++y) { size_t mc0 = static_cast(configs[y][0]); size_t nc0 = static_cast(configs[y][1]); size_t kc0 = static_cast(configs[y][2]); size_t bc0 = static_cast(configs[y][3]); size_t acc = 0; acc += (m - mc0) * (m - mc0); acc += (n - nc0) * (n - nc0); acc += (k - kc0) * (k - kc0); acc += (b - bc0) * (b - bc0); acc = std::sqrt(acc); if (acc < min_acc) { min_acc = acc; min_idx = y; } } // Get the configuration from the nearest GeMM shape const int m0 = configs[min_idx][4]; const int n0 = configs[min_idx][5]; const int k0 = configs[min_idx][6]; const int v0 = configs[min_idx][7]; const int h0 = configs[min_idx][8]; const int i_lhs = configs[min_idx][9]; const int i_rhs = configs[min_idx][10]; const int t_lhs = configs[min_idx][11]; const int t_rhs = configs[min_idx][12]; const int im_rhs = configs[min_idx][13]; return configure_lhs_rhs_info(m, n, m0, n0, k0, v0, h0, i_lhs, i_rhs, t_lhs, t_rhs, im_rhs); } } // namespace gemm } // namespace kernels } // namespace opencl } // namespace arm_compute