/* * Copyright (c) 2018-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/gpu/cl/kernels/ClWinogradOutputTransformKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/ActivationFunctionUtils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/StringUtils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/AccessWindowStatic.h" #include "src/core/CL/CLValidate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "support/Cast.h" #include "support/StringSupport.h" #include using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace opencl { namespace kernels { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_UNUSED(act_info); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON(output->data_layout() != winograd_info.output_data_layout); const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; const Size2D input_dimensions = winograd_info.input_dimensions; const unsigned int num_channels = (winograd_info.kernel_size.width + winograd_info.output_tile_size.width - 1) * (winograd_info.kernel_size.height + winograd_info.output_tile_size.height - 1); ARM_COMPUTE_RETURN_ERROR_ON_MSG( !cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, winograd_info.output_data_layout), "Winograd output transform not supported"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->dimension(2) != num_channels, "Wrong number of channels"); // Compute number of elements to process in the X and Y direction // Compute the number of output tiles along the x and y direction of size "output_tile_size" const Size2D num_tiles = compute_winograd_convolution_tiles(input_dimensions, kernel_size, output_tile_size, conv_info); ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(1) != static_cast((num_tiles.area()))); if (bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0)); } // Checks performed when output is configured if (output->total_size() != 0) { const TensorInfo tensor_info_output = input->clone()->set_tensor_shape(compute_winograd_output_transform_shape(*input, winograd_info)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output, const Size2D &output_tile_size) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_UNUSED(bias); unsigned int num_elems_processed_per_iteration = 1; if (input->data_layout() == DataLayout::NHWC) { // In the case of FP16 computation, we can perform more // output feature maps in a single work-item. // From experiments, num_elems_processed_per_iteration = 2 looks good for fp16 to // improve the performance. However, in order to make the implementation simpler, // we set num_elems_processed_per_iteration = 2 only when the OFMs are multiple of 2. const DataType dt = input->data_type(); const size_t dim0 = input->dimension(0); const bool cond = dt == DataType::F16 && ((dim0 % 2) == 0); if (cond) { num_elems_processed_per_iteration = 2; } } Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); bool window_changed = false; if (output->data_layout() == DataLayout::NCHW) { const int output_static_window_end_x = ceil_to_multiple(output->dimension(0), output_tile_size.width); const int output_static_window_end_y = ceil_to_multiple(output->dimension(1), output_tile_size.height); AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration); AccessWindowStatic output_access(output, 0, 0, output_static_window_end_x, output_static_window_end_y); window_changed = update_window_and_padding(win, input_access, output_access); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace ClWinogradOutputTransformKernel::ClWinogradOutputTransformKernel() { _type = CLKernelType::WINOGRAD; } void ClWinogradOutputTransformKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *bias, ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_winograd_output_transform_shape(*src, winograd_info))); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, bias, dst, winograd_info, act_info)); // Configure kernel window auto win_config = validate_and_configure_window(src, bias, dst, winograd_info.output_tile_size); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); IClKernel::configure_internal(win_config.second); auto padding_info = get_padding_info({src, bias, dst}); _is_nhwc = winograd_info.output_data_layout == DataLayout::NHWC; // Compute num_tiles_x const Size2D input_dimensions = winograd_info.input_dimensions; const Size2D kernel_size = winograd_info.kernel_size; const Size2D output_tile_size = winograd_info.output_tile_size; const PadStrideInfo conv_info = winograd_info.convolution_info; const int idx_width = get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::HEIGHT); // Compute the number of output tiles along the x and y direction of size "output_tile_size" const Size2D num_tiles = compute_winograd_convolution_tiles(input_dimensions, kernel_size, output_tile_size, conv_info); const size_t total_batches = dst->tensor_shape().total_size_upper(3); // Set build options CLBuildOptions build_opts; build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation()))); build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a())); build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b())); if ((output_tile_size.x() == 2) || (output_tile_size.x() == 1 && output_tile_size.y() == 2)) { build_opts.add_option("-DVEC_SIZE=2"); } else if ((output_tile_size.x() == 4) || (output_tile_size.x() == 1 && output_tile_size.y() == 4)) { build_opts.add_option("-DVEC_SIZE=4"); } _num_tiles_x = num_tiles.width; // Conditions of -cl-fast-relaxed-math causing accuracy issues can be traced from COMPMID-5324 const GPUTarget gpu_target = get_target(); const auto act_function = act_info.activation(); const auto src_data_type = src->data_type(); if ((gpu_target != GPUTarget::G71 && (gpu_target & GPUTarget::GPU_ARCH_MASK) == GPUTarget::BIFROST) && (act_function == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU || act_function == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU) && (src_data_type == DataType::F32 || src_data_type == DataType::F16)) { // -cl-fast-relaxed-math also sets -cl-finite-math-only and -cl-unsafe-math-optimizations // to disable -cl-finite-math-only, we only include -cl-unsafe-math-optimizations build_opts.add_option("-cl-unsafe-math-optimizations"); } else { build_opts.add_option("-cl-fast-relaxed-math"); } if (_is_nhwc) { build_opts.add_option_if(bias != nullptr, std::string("-DHAS_BIAS")); build_opts.add_option("-DN0=" + support::cpp11::to_string(win_config.second.x().step())); build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width)); build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src_data_type)); build_opts.add_option_if(total_batches > 1, "-DIS_BATCHED"); build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL"); build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL"); build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(_num_tiles_x)); } else { build_opts.add_option_if(bias != nullptr, std::string("-DHAS_BIAS")); build_opts.add_option("-DN0=" + support::cpp11::to_string(win_config.second.x().step())); build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(num_tiles.width)); build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width)); build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src_data_type)); build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(1))); build_opts.add_option("-DDST_WIDTH=" + support::cpp11::to_string(dst->dimension(idx_width))); build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height))); build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(src->dimension(2))); build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL"); build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL"); } // Storing tensor dimensions to be sent later as kernel arguments _src_height = src->dimension(1); _dst_width = dst->dimension(idx_width); _dst_height = dst->dimension(idx_height); // Create kernel std::string kernel_name = "winograd_output_transform_" + output_tile_size.to_string() + "_" + kernel_size.to_string() + "_" + lower_string(string_from_data_layout(winograd_info.output_data_layout)); // A macro guard to compile ONLY the kernel of interest build_opts.add_option("-D" + upper_string(kernel_name)); _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Set config_id for enabling LWS tuning _config_id = kernel_name; _config_id += "_"; _config_id += lower_string(string_from_data_type(src_data_type)); _config_id += "_"; _config_id += support::cpp11::to_string(src->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(src->dimension(1)); _config_id += "_"; _config_id += support::cpp11::to_string(dst->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(dst->dimension(1)); _config_id += "_"; _config_id += lower_string(string_from_data_layout(winograd_info.output_data_layout)); ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info) && _is_nhwc); } Status ClWinogradOutputTransformKernel::validate(const ITensorInfo *src, const ITensorInfo *bias, const ITensorInfo *dst, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ON_ERROR( validate_arguments(src, (bias != nullptr ? bias->clone().get() : nullptr), dst, winograd_info, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), (bias != nullptr ? bias->clone().get() : nullptr), dst->clone().get(), winograd_info.output_tile_size) .first); return Status{}; } void ClWinogradOutputTransformKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IClKernel::window(), window); auto src = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_0)); auto bias = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_1)); auto dst = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST)); // Collapse window Window window_collapsed = window.collapse_if_possible(IClKernel::window(), Window::DimZ); // Get initial windows Window slice = window_collapsed.first_slice_window_4D(); slice.set(Window::DimZ, Window::Dimension(0, 1, 1)); // Setup output slice Window slice_out(slice); slice_out.set(Window::DimX, Window::Dimension(0, 0, 0)); slice_out.set(Window::DimY, Window::Dimension(0, 0, 0)); if (bias != nullptr) { unsigned int idx1 = 2 * num_arguments_per_4D_tensor(); Window slice_biases; slice_biases.use_tensor_dimensions(bias->info()->tensor_shape()); add_1D_tensor_argument(idx1, bias, slice_biases); } if (_is_nhwc) { unsigned int idx2 = 2 * num_arguments_per_4D_tensor() + ((bias != nullptr) ? num_arguments_per_1D_tensor() : 0); _kernel.setArg(idx2++, static_cast(dst->info()->total_size() - dst->info()->strides_in_bytes().y())); _kernel.setArg(idx2++, _src_height); _kernel.setArg(idx2++, _dst_width); _kernel.setArg(idx2++, _dst_height); } do { unsigned int idx = 0; add_4D_tensor_argument(idx, src, slice); add_4D_tensor_argument(idx, dst, slice_out); enqueue(queue, *this, slice, lws_hint()); } while (window.slide_window_slice_3D(slice) && window.slide_window_slice_3D(slice_out)); } } // namespace kernels } // namespace opencl } // namespace arm_compute