/* * Copyright (c) 2018-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/gpu/cl/kernels/ClWinogradInputTransformKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/StringUtils.h" #include "src/core/AccessWindowStatic.h" #include "src/core/CL/CLValidate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "support/Cast.h" #include "support/StringSupport.h" namespace arm_compute { namespace opencl { namespace kernels { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd input transform only supports unit strides"); ARM_COMPUTE_RETURN_ERROR_ON_MSG( !cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, input->data_layout()), "Winograd input transform not supported"); ARM_COMPUTE_UNUSED(conv_info); ARM_COMPUTE_UNUSED(output_tile_size); ARM_COMPUTE_UNUSED(kernel_size); // Validate configured output if (output->total_size() != 0) { const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info) { ARM_COMPUTE_UNUSED(output); ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); bool window_changed = false; int num_elems_processed_per_iteration = 1; if (input->data_layout() == DataLayout::NHWC) { // In the case of FP16 computation, we can perform more // output feature maps in a single work-item. // From experiments, num_elems_processed_per_iteration = 2 looks good for fp16 to // improve the performance. However, in order to make the implementation simpler, // we set num_elems_processed_per_iteration = 2 only when the OFMs are multiple of 2. // Note: At the moment, only Winograd Input Transform 3x3 can support N0 != 1 const DataType dt = input->data_type(); const size_t dim0 = input->dimension(0); const size_t k_sz = winograd_info.kernel_size.area(); const bool cond = dt == DataType::F16 && ((dim0 % 2) == 0); if (cond) { if (k_sz == 3 || k_sz == 9) { num_elems_processed_per_iteration = 2; } } } Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); if (input->data_layout() == DataLayout::NCHW) { const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; unsigned int num_elems_read_per_iteration_x = output_tile_size.width + kernel_size.width - 1; unsigned int num_elems_read_per_iteration_y = output_tile_size.height + kernel_size.height - 1; AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(), num_elems_read_per_iteration_x, num_elems_read_per_iteration_y); window_changed = update_window_and_padding(win, input_access); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace ClWinogradInputTransformKernel::ClWinogradInputTransformKernel() { _type = CLKernelType::WINOGRAD; } BorderSize ClWinogradInputTransformKernel::border_size() const { return _border_size; } void ClWinogradInputTransformKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const WinogradInfo &winograd_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, winograd_info)); auto padding_info = get_padding_info({src, dst}); const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; _data_layout = src->data_layout(); const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); // Compute the number of output tiles along the x and y direction of size "output_tile_size" const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(src->dimension(idx_w), src->dimension(idx_h)), kernel_size, output_tile_size, conv_info); _num_tiles_x = num_tiles.width; _num_tiles_y = num_tiles.height; const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*src, winograd_info); // Output auto initialization if not yet initialized auto_init_if_empty(*dst, src->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_ERROR_ON(_num_tiles_x * _num_tiles_y != static_cast(dst->dimension(1))); const size_t total_batches = src->tensor_shape().total_size_upper(3); // Create window and update padding auto win_config = validate_and_configure_window(src, dst, winograd_info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); IClKernel::configure_internal(win_config.second, cl::NDRange(1, 1, 8)); _src_width = src->dimension(idx_w); _src_height = src->dimension(idx_h); CLBuildOptions build_opts; if (_data_layout == DataLayout::NHWC) { build_opts.add_option("-DNHWC"); build_opts.add_option("-DN0=" + support::cpp11::to_string(win_config.second.x().step())); build_opts.add_option("-DPAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left())); build_opts.add_option("-DPAD_TOP=" + support::cpp11::to_string(conv_info.pad_top())); build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width)); build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src->data_type())); build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL"); build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_INPUT_TRANSFORM_VERTICAL"); build_opts.add_option_if(total_batches > 1, "-DIS_BATCHED"); } else { build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(_num_tiles_x)); build_opts.add_option("-DPAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left())); build_opts.add_option("-DPAD_TOP=" + support::cpp11::to_string(conv_info.pad_top())); build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width)); build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src->data_type())); build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL"); build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_INPUT_TRANSFORM_VERTICAL"); build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(src->dimension(2))); } // Create kernel std::string kernel_name = "winograd_input_transform_" + output_tile_size.to_string() + "_" + kernel_size.to_string(); // Get the maximum dimension from the tile size const unsigned int tile_max_dim = std::max(output_tile_size.width, output_tile_size.height); // Check optimized kernel if output_dims == 2x2 if ((tile_max_dim == 2) && (_data_layout == DataLayout::NCHW)) { _step_z = (src->dimension(2) % 2) != 0 ? 1 : 2; } // Append stepz and data layout kernel_name += "_stepz"; kernel_name += support::cpp11::to_string(_step_z); kernel_name += "_" + lower_string(string_from_data_layout(_data_layout)); // A macro guard to compile ONLY the kernel of interest build_opts.add_option("-D" + upper_string(kernel_name)); _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); _border_size = BorderSize(src->padding()); ARM_COMPUTE_ERROR_ON((src->data_layout() == DataLayout::NHWC) && has_padding_changed(padding_info)); _config_id = kernel_name; _config_id += support::cpp11::to_string(src->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(src->dimension(1)); _config_id += "_"; _config_id += support::cpp11::to_string(src->dimension(2)); _config_id += "_"; _config_id += support::cpp11::to_string(conv_info.pad_left()); _config_id += "_"; _config_id += support::cpp11::to_string(conv_info.pad_top()); _config_id += "_"; _config_id += lower_string(string_from_data_layout(_data_layout)); } Status ClWinogradInputTransformKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const WinogradInfo &winograd_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, winograd_info)); ARM_COMPUTE_RETURN_ON_ERROR( validate_and_configure_window(src->clone().get(), dst->clone().get(), winograd_info).first); return Status{}; } void ClWinogradInputTransformKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); auto src = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC)); auto dst = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST)); const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); const size_t idx_c = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL); const size_t total_batches = window.shape().total_size_upper(3); // Collapse window Window window_collapsed = window.collapse_if_possible(IClKernel::window(), Window::DimZ); if (_data_layout == DataLayout::NHWC) { Window slice = window_collapsed.first_slice_window_3D(); slice.set(1, Window::Dimension(0, _num_tiles_x * _num_tiles_y, 1)); slice.set(2, Window::Dimension(0, total_batches, 1)); unsigned int idx = 0; add_4D_tensor_argument(idx, src, slice); add_4D_tensor_argument(idx, dst, slice); _kernel.setArg(idx++, _src_width); _kernel.setArg(idx++, _src_height); _kernel.setArg(idx++, _num_tiles_x); _kernel.setArg(idx++, _num_tiles_y); enqueue(queue, *this, slice, lws_hint()); } else { Window slice = window_collapsed.first_slice_window_3D(); slice.set(idx_w, Window::Dimension(0, _num_tiles_x, 1)); slice.set(idx_h, Window::Dimension(0, _num_tiles_y, 1)); ARM_COMPUTE_ERROR_ON(((slice[idx_c].end() - slice[idx_c].start()) % _step_z) != 0); slice.set(idx_c, Window::Dimension(slice[idx_c].start(), slice[idx_c].end(), _step_z)); unsigned int idx = 2 * num_arguments_per_3D_tensor(); _kernel.setArg(idx++, static_cast(src->info()->strides_in_bytes()[3])); _kernel.setArg(idx++, static_cast(dst->info()->strides_in_bytes()[3])); do { unsigned int idx = 0; add_3D_tensor_argument(idx, src, slice); add_3D_tensor_argument(idx, dst, slice); enqueue(queue, *this, slice, lws_hint()); } while (window_collapsed.slide_window_slice_3D(slice)); } } } // namespace kernels } // namespace opencl } // namespace arm_compute