/* * Copyright (c) 2022-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/utils/ActivationFunctionUtils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/StringUtils.h" #include "arm_compute/core/Validate.h" #include "src/core/CL/CLUtils.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/utils/helpers/float_ops.h" #include "src/gpu/cl/kernels/gemm/ClGemmHelpers.h" #include "support/Cast.h" #include "support/StringSupport.h" namespace arm_compute { namespace opencl { namespace kernels { namespace { using ElementsProcessed = Steps; // Block size dimensions for the MMUL extension constexpr int mmul_m0 = 4; constexpr int mmul_n0 = 4; constexpr int mmul_k0 = 4; Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info) { ARM_COMPUTE_UNUSED(alpha); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst); ARM_COMPUTE_RETURN_ERROR_ON_MSG(!arm_matrix_multiply_supported(CLKernelLibrary::get().get_device()), "The extension cl_arm_matrix_multiply is not supported on the target platform"); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1); ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(lhs_info.m0 < 1, "Only values greater than 0 are supported for m0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.n0 != 1 && rhs_info.n0 != 2 && rhs_info.n0 != 3 && rhs_info.n0 != 4 && rhs_info.n0 != 8 && rhs_info.n0 != 16, "Only 1,2,3,4,8, and 16 are supported for n0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((rhs_info.k0 != 1 || lhs_info.k0 != 1), "Only 1 is supported for k0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((rhs_info.h0 != 4), "Only 4 is supported for h0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.interleave != true, "Only true is supported for interleave with mmul extension enabled"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.transpose != false, "Only false is supported for transpose with mmul extension enabled"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported"); ARM_COMPUTE_RETURN_ON_ERROR(gemm::validate_image2d_support_on_rhs(*src1, rhs_info)); const unsigned int m = gemm_info.m; const unsigned int n = gemm_info.n; const unsigned int k = gemm_info.k; ARM_COMPUTE_UNUSED(m); ARM_COMPUTE_UNUSED(n); ARM_COMPUTE_UNUSED(k); ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != k); // Validate the reinterpreted-as-3D-case if (gemm_info.reinterpret_input_as_3d) { ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != m); } else { ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != m); } // Validate the gemm-batched case if (src1->num_dimensions() > 2) { if (gemm_info.depth_output_gemm3d != 0) { ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(3) != src1->dimension(2)); } else { ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(2) != src1->dimension(2)); } } if (src2 != nullptr && !(helpers::float_ops::is_zero(beta))) { const unsigned int src2_dim0 = src2->dimension(0); const unsigned int src2_dim1 = src2->dimension(1); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src2, src1); if (gemm_info.broadcast_bias) { ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim1 != 1 || src2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted"); } else { ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim0 != n || src2_dim1 != m), "Incorrect dimension of bias matrix"); } } TensorShape tensor_shape1{src1->tensor_shape()}; tensor_shape1.set(0, n); tensor_shape1.set(1, k); const TensorInfo tensor_info1 = src1->clone()->set_tensor_shape(tensor_shape1); const TensorInfo tensor_info_reshaped1 = src1->clone()->set_tensor_shape(misc::shape_calculator::compute_rhs_reshaped_shape(tensor_info1, rhs_info)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1); if (dst->total_size() != 0) { const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info) { ARM_COMPUTE_UNUSED(src0, src1, src2); bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0; // dst tensor auto initialization if not yet initialized auto_init_if_empty( *dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info))); TensorInfo tmp_info(*dst); if (reinterpret_output_as_3d) { // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM, // the window needs to be constructed on the 2D collapsed version of the tensor TensorShape tmp_shape(dst->tensor_shape()); tmp_shape.collapse(2U, 1U); tmp_info.set_tensor_shape(tmp_shape); } Window win = calculate_max_window(tmp_info, Steps(1, 1)); // Collapse along the Z direction // This collapse needs to be here in order to tune the Z dimension of LWS const unsigned int dimension_to_collapse = std::min(static_cast(dst->num_dimensions()), 2u); Window collapsed = win.collapse(win, dimension_to_collapse); // Reconfigure window size, one arm_matrix_multiply kernel needs 16 threads to finish. Window::Dimension x_dimension = collapsed.x(); Window::Dimension y_dimension = collapsed.y(); // Make M and N multiple of M0 and N0 respectively const unsigned int ceil_to_multiple_n_n0 = ceil_to_multiple(x_dimension.end(), rhs_info.n0); const unsigned int ceil_to_multiple_m_m0 = ceil_to_multiple(y_dimension.end(), lhs_info.m0); // Divide M and N by M0 and N0 respectively const unsigned int n_div_n0 = ceil_to_multiple_n_n0 / rhs_info.n0; const unsigned int m_div_m0 = ceil_to_multiple_m_m0 / lhs_info.m0; // Make n_div_n0 and m_div_m0 multiple of mmul_n0 and mmul_k0 respectively const unsigned int ceil_to_multiple_n_div_n0_mmul_n0 = ceil_to_multiple(n_div_n0, mmul_n0); const unsigned int ceil_to_multiple_m_div_m0_mmul_k0 = ceil_to_multiple(m_div_m0, mmul_k0); // Ensure x_dimension is multiple of MMUL block size (mmul_n0 * mmul_k0) x_dimension.set_end(ceil_to_multiple_n_div_n0_mmul_n0 * mmul_k0); y_dimension.set_end(ceil_to_multiple_m_div_m0_mmul_k0 / mmul_k0); collapsed.set(Window::DimX, x_dimension); collapsed.set(Window::DimY, y_dimension); return std::make_pair(Status{}, collapsed); } } // namespace ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel() { _type = CLKernelType::GEMM; } void ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::configure(const CLCompileContext &compile_context, ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst); // dst tensor auto initialization if not yet initialized auto_init_if_empty( *dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info))); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info)); auto padding_info = get_padding_info({src0, src1, src2, dst}); _add_bias = src2 != nullptr; _export_to_cl_image = rhs_info.export_to_cl_image; // Configure kernel window auto win_config = validate_and_configure_window(src0, src1, src2, dst, lhs_info, rhs_info, gemm_info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); IClKernel::configure_internal(win_config.second); _m = gemm_info.m; _n = gemm_info.n; _k = gemm_info.k; const unsigned int m0_leftover = _m % lhs_info.m0; const unsigned int n0_leftover = _n % rhs_info.n0; // Create build options CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type())); build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha)); build_opts.add_option_if(src2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta)); build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA"); build_opts.add_option_if(gemm_info.broadcast_bias, "-DBROADCAST_BIAS"); build_opts.add_option_if(src0->data_type() == DataType::F16, "-DHALF_PRECISION"); build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0)); build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0)); build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0)); build_opts.add_option("-DM0_LEFTOVER=" + support::cpp11::to_string(m0_leftover)); build_opts.add_option("-DN0_LEFTOVER=" + support::cpp11::to_string(n0_leftover)); build_opts.add_option("-DMMUL_M0=" + support::cpp11::to_string(mmul_m0)); build_opts.add_option("-DMMUL_N0=" + support::cpp11::to_string(mmul_n0)); build_opts.add_option("-DMMUL_K0=" + support::cpp11::to_string(mmul_k0)); build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation()))); build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a())); build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b())); build_opts.add_option_if(gemm_info.reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D"); build_opts.add_option_if(gemm_info.depth_output_gemm3d != 0, "-DREINTERPRET_OUTPUT_AS_3D"); build_opts.add_option_if(src1->num_dimensions() > 2, "-DBATCHED_RHS"); std::string kernel_name("gemm_mm_reshaped_only_rhs_nt_mmul"); kernel_name += _export_to_cl_image ? "_texture" : ""; // A macro guard to compile ONLY the kernel of interest build_opts.add_option("-D" + upper_string(kernel_name)); // Create kernel _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Set config_id for enabling LWS tuning _config_id = kernel_name; _config_id += "_"; _config_id += (_add_bias ? "add_bias_" : ""); _config_id += (gemm_info.broadcast_bias ? "broadcast_bias_" : ""); _config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : ""); _config_id += lower_string(string_from_data_type(src0->data_type())); _config_id += "_"; _config_id += support::cpp11::to_string(_m); _config_id += "_"; _config_id += support::cpp11::to_string(_n); _config_id += "_"; _config_id += support::cpp11::to_string(_k); _config_id += "_"; _config_id += support::cpp11::to_string(lhs_info.m0); _config_id += "_"; _config_id += support::cpp11::to_string(rhs_info.n0); ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info)); } Status ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(), src1->clone().get(), src2 != nullptr ? src2->clone().get() : nullptr, dst->clone().get(), lhs_info, rhs_info, gemm_info) .first); return Status{}; } void ClGemmMatrixMultiplyReshapedOnlyRhsMMULKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const auto src0 = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_0)); const auto src1 = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_1)); const auto src2 = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_2)); auto dst = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST)); ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst); ARM_COMPUTE_ERROR_ON(_add_bias && src2 == nullptr); if (src1->info()->num_dimensions() < 3) { // The stride_z for matrix B must be zero if we do not slice ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0); } cl::Image2D src1_image2d; if (_export_to_cl_image) { const TensorShape shape2d(src1->info()->dimension(0) / 4, src1->info()->dimension(1) * src1->info()->dimension(2)); const size_t image_row_pitch = src1->info()->strides_in_bytes()[1]; src1_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), src1->cl_buffer(), shape2d, src1->info()->data_type(), image_row_pitch, CLImage2DType::ReadOnly); } Window slice = window.first_slice_window_3D(); do { unsigned int idx = 0; add_3d_tensor_nhw_argument(idx, src0); if (_export_to_cl_image) { _kernel.setArg(idx++, src1_image2d); } add_3d_tensor_nhw_argument(idx, src1); // Bias buffer (_add_bias == true) if (_add_bias) { add_3d_tensor_nhw_argument(idx, src2); } // dst buffer add_3d_tensor_nhw_argument(idx, dst); // Pass m, n and k at runtime as signed ints, to ensure results of any subtractions they could be operand in, would still be signed. _kernel.setArg(idx++, _m); _kernel.setArg(idx++, _n); _kernel.setArg(idx++, _k); // LWS_x should be multiple of 16 at least. (32, 2) has been chosen to have more work-items on a single core // LWS also enforces the order of execution of the workitems which improves cache utilization enqueue(queue, *this, slice, cl::NDRange(32, 2), false); } while (window.slide_window_slice_3D(slice)); } } // namespace kernels } // namespace opencl } // namespace arm_compute