/* * Copyright (c) 2018-2021, 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/gpu/cl/kernels/ClElementwiseKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/ActivationFunctionUtils.h" #include "arm_compute/core/utils/helpers/AdjustVecSize.h" #include "arm_compute/core/utils/StringUtils.h" #include "src/common/utils/Validate.h" #include "src/core/CL/CLValidate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "support/Cast.h" #include "support/StringSupport.h" #include namespace arm_compute { namespace opencl { namespace kernels { namespace { constexpr unsigned int vector_size_byte_opencl = 16; std::map supported_arithmetic_ops = { {ArithmeticOperation::ADD, "ADD"}, {ArithmeticOperation::SUB, "SUB"}, {ArithmeticOperation::DIV, "DIV"}, {ArithmeticOperation::SQUARED_DIFF, "SQUARED_DIFF"}, {ArithmeticOperation::MIN, "MIN"}, {ArithmeticOperation::MAX, "MAX"}, {ArithmeticOperation::POWER, "POWER"}, {ArithmeticOperation::PRELU, "PRELU"}, }; std::map supported_sat_arithmetic_ops = { {ArithmeticOperation::ADD, "ADD"}, {ArithmeticOperation::SUB, "SUB"}, }; std::string generate_id_for_tuning_common(const std::string &kernel_name, const ITensorInfo &src1, const ITensorInfo &dst) { std::string config_id; // Set config_id for enabling LWS tuning config_id = kernel_name; config_id += "_"; config_id += lower_string(string_from_data_type(src1.data_type())); config_id += "_"; config_id += support::cpp11::to_string(dst.dimension(0)); config_id += "_"; config_id += support::cpp11::to_string(dst.dimension(1)); return config_id; } Status validate_in_place_output_shape(const bool in_place, const bool src1_in_place, const ITensorInfo &src1, const ITensorInfo &src2, const ITensorInfo &dst, const TensorShape &out_shape) { if (in_place) { ARM_COMPUTE_RETURN_ERROR_ON_MSG( detail::have_different_dimensions(out_shape, src1_in_place ? src1.tensor_shape() : src2.tensor_shape(), 0), "Wrong shape for dst, cannot do in_place calculation"); } else { ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0), "Wrong shape for dst"); } return Status{}; } Status validate_arguments_with_float_only_supported_rules(const ITensorInfo &src1, const ITensorInfo &src2, const ITensorInfo &dst) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(&src1, &src2, &dst); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&src1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src1, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src1, &src2); // Check whether it is in_place calculation const bool in_place = (&src1 == &dst) || (&src2 == &dst); const bool src1_in_place = in_place && (&src1 == &dst); const TensorShape out_shape = TensorShape::broadcast_shape(src1.tensor_shape(), src2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured dst if (dst.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src1, &dst); ARM_COMPUTE_RETURN_ON_ERROR( validate_in_place_output_shape(in_place, src1_in_place, src1, src2, dst, out_shape)); } return Status{}; } Status validate_arguments_divide_operation(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src1, src2, dst); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::F16, DataType::F32, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, src2); // Check whether it is in_place calculation const bool in_place = (src1 == dst) || (src2 == dst); const bool src1_in_place = in_place && (src1 == dst); const TensorShape out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured dst if (dst->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::F16, DataType::F32, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, dst); ARM_COMPUTE_RETURN_ON_ERROR( validate_in_place_output_shape(in_place, src1_in_place, *src1, *src2, *dst, out_shape)); } return Status{}; } Status validate_arguments_with_arithmetic_rules(const ITensorInfo &src1, const ITensorInfo &src2, const ITensorInfo &dst) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&src1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src1, &src2); if (is_data_type_quantized_symmetric(src1.data_type())) { const int32_t in1_offset = src1.quantization_info().uniform().offset; const int32_t in2_offset = src2.quantization_info().uniform().offset; ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_offset != 0, "For quantized symmetric, offset must be zero"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(in2_offset != 0, "For quantized symmetric, offset must be zero"); } // Check whether it is in_place calculation const bool in_place = (&src1 == &dst) || (&src2 == &dst); const bool src1_in_place = in_place && (&src1 == &dst); const TensorShape out_shape = TensorShape::broadcast_shape(src1.tensor_shape(), src2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured dst if (dst.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src1, &dst); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0), "Wrong shape for dst"); ARM_COMPUTE_RETURN_ON_ERROR( validate_in_place_output_shape(in_place, src1_in_place, src1, src2, dst, out_shape)); if (is_data_type_quantized_symmetric(dst.data_type())) { const int32_t offset = dst.quantization_info().uniform().offset; ARM_COMPUTE_RETURN_ERROR_ON_MSG(offset != 0, "For quantized symmetric, offset must be zero"); } } return Status{}; } CLBuildOptions generate_build_options_with_arithmetic_rules(const ITensorInfo &src1, const ITensorInfo &src2, const ITensorInfo &dst, const std::string &operation_string) { CLBuildOptions build_opts; const unsigned int num_elems_processed_per_iteration = adjust_vec_size(vector_size_byte_opencl / dst.element_size(), dst.dimension(0)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src1.data_type())); build_opts.add_option("-DVEC_SIZE_IN1=" + support::cpp11::to_string(src1.dimension(0) == 1 ? 1 : num_elems_processed_per_iteration)); build_opts.add_option("-DVEC_SIZE_IN2=" + support::cpp11::to_string(src2.dimension(0) == 1 ? 1 : num_elems_processed_per_iteration)); build_opts.add_option("-DVEC_SIZE_OUT=" + support::cpp11::to_string(num_elems_processed_per_iteration)); build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(dst.dimension(0) % num_elems_processed_per_iteration)); build_opts.add_option("-DOP=" + operation_string); if (is_data_type_quantized(src1.data_type())) { const UniformQuantizationInfo iq1info = src1.quantization_info().uniform(); const UniformQuantizationInfo iq2info = src2.quantization_info().uniform(); const UniformQuantizationInfo oqinfo = dst.quantization_info().uniform(); build_opts.add_option("-DOFFSET_IN1=" + support::cpp11::to_string(iq1info.offset)); build_opts.add_option("-DOFFSET_IN2=" + support::cpp11::to_string(iq2info.offset)); build_opts.add_option("-DOFFSET_OUT=" + support::cpp11::to_string(oqinfo.offset)); build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1info.scale)); build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2info.scale)); build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oqinfo.scale)); } build_opts.add_option_if(src1.data_type() == DataType::S32, "-DS32"); // Check whether it is in_place calculation const bool in_place = (&src1 == &dst) || (&src2 == &dst); const bool src1_in_place = in_place && (&src1 == &dst); build_opts.add_option_if(in_place, "-DIN_PLACE"); build_opts.add_option_if(src1_in_place, "-DSRC1_IN_PLACE"); return build_opts; } std::pair configure_window_arithmetic_common(ITensorInfo &dst) { const unsigned int num_elems_processed_per_iteration = adjust_vec_size(vector_size_byte_opencl / dst.element_size(), dst.dimension(0)); Window win = calculate_max_window(dst, Steps(num_elems_processed_per_iteration)); return std::make_pair(Status{}, win); } std::pair validate_and_configure_window_for_arithmetic_operators(ITensorInfo &src1, ITensorInfo &src2, ITensorInfo &dst) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(src1, src2); const TensorShape &out_shape = broadcast_pair.first; auto_init_if_empty(dst, out_shape, 1, src1.data_type()); return configure_window_arithmetic_common(dst); } std::pair validate_and_configure_window_for_logical_binary_operators(ITensorInfo &src1, ITensorInfo &src2, ITensorInfo &dst) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(src1, src2); const TensorShape &out_shape = broadcast_pair.first; set_shape_if_empty(dst, out_shape); set_data_type_if_unknown(dst, DataType::U8); return configure_window_arithmetic_common(dst); } std::pair validate_and_configure_window_for_division(ITensorInfo &src1, ITensorInfo &src2, ITensorInfo &dst) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(src1, src2); const TensorShape &out_shape = broadcast_pair.first; auto_init_if_empty(dst, out_shape, 1, src1.data_type()); return configure_window_arithmetic_common(dst); } } // namespace ClElementwiseKernel::ClElementwiseKernel() { _type = CLKernelType::ELEMENTWISE; } void ClElementwiseKernel::configure_common(const ClCompileContext &compile_context, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst) { // Configure kernel window auto win_config = validate_and_configure_window(*src1, *src2, *dst); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); std::string kernel_name = "elementwise_operation_" + name(); if (is_data_type_quantized(src1->data_type())) { kernel_name += "_quantized"; } // Set kernel build options CLBuildOptions build_opts = generate_build_options(*src1, *src2, *dst); if (_act_info.enabled()) { build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(_act_info.activation()))); build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(_act_info.a())); build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(_act_info.b())); } // Create kernel _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); ICLKernel::configure_internal(win_config.second); _config_id = generate_id_for_tuning(kernel_name, *src1, *dst); } void ClElementwiseKernel::run_op(ITensorPack &tensors, const Window &window, ::cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const auto src_0 = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_0)); const auto src_1 = utils::cast::polymorphic_downcast(tensors.get_const_tensor(TensorType::ACL_SRC_1)); auto dst = utils::cast::polymorphic_downcast(tensors.get_tensor(TensorType::ACL_DST)); ARM_COMPUTE_ERROR_ON_NULLPTR(src_0, src_1, dst); const TensorShape &in_shape1 = src_0->info()->tensor_shape(); const TensorShape &in_shape2 = src_1->info()->tensor_shape(); const TensorShape &out_shape = dst->info()->tensor_shape(); bool can_collapse = true; const bool is_vector = in_shape1.num_dimensions() == 1 || in_shape2.num_dimensions() == 1; if (std::min(in_shape1.total_size(), in_shape2.total_size()) > 1 && !is_vector) { can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ); for (size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++) { can_collapse = (in_shape1[d] == in_shape2[d]); } } bool has_collapsed = false; Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window; const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1; const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2; Window slice = collapsed.first_slice_window_3D(); Window slice_src1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed); Window slice_src2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed); // Check whether it is in_place calculation const bool in_place = (src_0 == dst) || (src_1 == dst); do { unsigned int idx = 0; add_3D_tensor_argument(idx, src_0, slice_src1); add_3D_tensor_argument(idx, src_1, slice_src2); if (!in_place) { add_3D_tensor_argument(idx, dst, slice); } enqueue(queue, *this, slice, lws_hint()); ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_src1)); ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_src2)); } while (collapsed.slide_window_slice_3D(slice)); } /** Logical binary */ void ClLogicalBinaryKernel::configure(const ClCompileContext &compile_context, LogicalOperation op, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst) { ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst); ARM_COMPUTE_ERROR_THROW_ON(ClLogicalBinaryKernel::validate(op, src1, src2, dst)); _op = op; configure_common(compile_context, src1, src2, dst); } Status ClLogicalBinaryKernel::validate(LogicalOperation op, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst) { ARM_COMPUTE_UNUSED(op); ARM_COMPUTE_ASSERT(op != LogicalOperation::Unknown && op != LogicalOperation::Not); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src1, src2, dst); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::U8); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, src2); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*src1, *src2, *dst)); ARM_COMPUTE_RETURN_ON_ERROR( validate_and_configure_window_for_logical_binary_operators(*src1->clone(), *src2->clone(), *dst->clone()) .first); return Status{}; } std::string ClLogicalBinaryKernel::name() { switch (_op) { case LogicalOperation::And: return "AND"; case LogicalOperation::Or: return "OR"; case LogicalOperation::Not: /* fall through */ default: ARM_COMPUTE_ASSERT(true); } return ""; } std::pair ClLogicalBinaryKernel::validate_and_configure_window(ITensorInfo &src1, ITensorInfo &src2, ITensorInfo &dst) { return validate_and_configure_window_for_logical_binary_operators(src1, src2, dst); } CLBuildOptions ClLogicalBinaryKernel::generate_build_options(const ITensorInfo &src1, const ITensorInfo &src2, const ITensorInfo &dst) { // The arithmetic utility functions can be share return generate_build_options_with_arithmetic_rules(src1, src2, dst, name()); } std::string ClLogicalBinaryKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &src1, const ITensorInfo &dst) { return generate_id_for_tuning_common(kernel_name, src1, dst); } /** Arithmetic operations with saturation*/ void ClSaturatedArithmeticKernel::configure(const ClCompileContext &compile_context, ArithmeticOperation op, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ConvertPolicy &policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(ClSaturatedArithmeticKernel::validate(op, input1, input2, output, policy, act_info)); auto padding_info = get_padding_info({input1, input2, output}); _policy = policy; _op = op; _act_info = act_info; configure_common(compile_context, input1, input2, output); ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info)); } Status ClSaturatedArithmeticKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy, const ActivationLayerInfo &act_info) { ARM_COMPUTE_UNUSED(op, policy); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output)); ARM_COMPUTE_RETURN_ON_ERROR( validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()) .first); ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type())); return Status{}; } std::pair ClSaturatedArithmeticKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { return validate_and_configure_window_for_arithmetic_operators(input1, input2, output); } CLBuildOptions ClSaturatedArithmeticKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { const bool has_float_out = is_data_type_float(output.data_type()); auto build_options = generate_build_options_with_arithmetic_rules(input1, input2, output, name()); build_options.add_option((_policy == ConvertPolicy::WRAP || has_float_out) ? "-DWRAP" : "-DSATURATE"); return build_options; } std::string ClSaturatedArithmeticKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output) { auto config_id = generate_id_for_tuning_common(kernel_name, input1, output); config_id += (_policy == ConvertPolicy::WRAP) ? "_wrap_" : "_saturate_"; config_id += lower_string(string_from_data_layout(input1.data_layout())); return config_id; } std::string ClSaturatedArithmeticKernel::name() { return supported_sat_arithmetic_ops[_op]; } /** Arithmetic operations*/ void ClArithmeticKernel::configure(const ClCompileContext &compile_context, ArithmeticOperation op, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst); ARM_COMPUTE_ERROR_THROW_ON(ClArithmeticKernel::validate(op, src1, src2, dst, act_info)); auto padding_info = get_padding_info({src1, src2, dst}); _op = op; _act_info = act_info; configure_common(compile_context, src1, src2, dst); ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info)); } Status ClArithmeticKernel::validate(ArithmeticOperation op, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, const ActivationLayerInfo &act_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src1, src2, dst); if (op == ArithmeticOperation::DIV) { // Partial integer support S32/F32/F16 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_divide_operation(src1, src2, dst)); ARM_COMPUTE_RETURN_ON_ERROR( validate_and_configure_window_for_division(*src1->clone(), *src2->clone(), *dst->clone()).first); } else if (op == ArithmeticOperation::POWER) { // Power operators doesn't support integer arithmetic ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_float_only_supported_rules(*src1, *src2, *dst)); ARM_COMPUTE_RETURN_ON_ERROR( validate_and_configure_window_for_division(*src1->clone(), *src2->clone(), *dst->clone()).first); } else { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*src1, *src2, *dst)); ARM_COMPUTE_RETURN_ON_ERROR( validate_and_configure_window_for_arithmetic_operators(*src1->clone(), *src2->clone(), *dst->clone()) .first); } ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(dst->data_type())); return Status{}; } std::pair ClArithmeticKernel::validate_and_configure_window(ITensorInfo &src1, ITensorInfo &src2, ITensorInfo &dst) { if (_op == ArithmeticOperation::DIV || _op == ArithmeticOperation::POWER) { // Division and Power operators don't support integer arithmetic return validate_and_configure_window_for_division(src1, src2, dst); } else { return validate_and_configure_window_for_arithmetic_operators(src1, src2, dst); } } CLBuildOptions ClArithmeticKernel::generate_build_options(const ITensorInfo &src1, const ITensorInfo &src2, const ITensorInfo &dst) { return generate_build_options_with_arithmetic_rules(src1, src2, dst, name()); } std::string ClArithmeticKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &src1, const ITensorInfo &dst) { return generate_id_for_tuning_common(kernel_name, src1, dst); } std::string ClArithmeticKernel::name() { return supported_arithmetic_ops[_op]; } } // namespace kernels } // namespace opencl } // namespace arm_compute