/* * Copyright (c) 2023-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "GpuCkwCast.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/utils/helpers/AdjustVecSize.h" #include "arm_compute/core/Validate.h" #include "src/core/helpers/WindowHelpers.h" #include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/CkwHelper.h" #include "src/dynamic_fusion/sketch/gpu/ckw_driver/components/utils/type_converter/Common.h" #include "src/dynamic_fusion/sketch/gpu/ckw_driver/GpuCkwScopedKernelWriter.h" #include "src/dynamic_fusion/sketch/gpu/ckw_driver/GpuCkwVariableTable.h" #include "src/dynamic_fusion/sketch/gpu/GpuKernelArgument.h" #include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h" #include "compute_kernel_writer/include/ckw/KernelWriter.h" #include #include namespace arm_compute { namespace experimental { namespace dynamic_fusion { GpuCkwCast::GpuCkwCast(ComponentId id, const ArgumentPack &tensors, const Attributes &attributes) : IGpuCkwComponentDriver{id, tensors}, _src{}, _dst{}, _attributes{attributes} { _src = this->tensors().get_const_tensor(TensorType::ACL_SRC_0); _dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0); ARM_COMPUTE_ERROR_ON_NULLPTR(_src, _dst); ARM_COMPUTE_ERROR_ON_MSG(is_data_type_float(_src->data_type()) == false, "The source data type must be a floating-point data type"); } void GpuCkwCast::write_component_code(const ComponentGroup &comp_group, GpuCkwVariableTable &vtable, GpuCkwScopedKernelWriter writer) const { /******************************************************************************** * 1 - Define tensors ********************************************************************************/ GpuCkwComponentArgument *src = vtable.declare_variable(comp_group, writer, _src, "src"); GpuCkwComponentArgument *dst = vtable.declare_variable(comp_group, writer, _dst, "dst"); /******************************************************************************** * 2 - Define CKW constants ********************************************************************************/ const auto dst_h = static_cast(_dst->dimension(1)); // CKW constants auto const_dst_h_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_h}}, ckw::DataType::Int32)); auto const_pos_1_i32 = writer->declare_constant_tile(ckw::ConstantData({{1}}, ckw::DataType::Int32)); auto const_0_i32 = writer->declare_constant_tile(ckw::ConstantData({{0}}, ckw::DataType::Int32)); /******************************************************************************** * 3 - Define the compute block parameters and destination tile (if not root component) * Bind the tile to the tensor to share it among different components and * initialize the compute block parameters ********************************************************************************/ // The compute block parameters depend on the employed tensor format // Destination compute block size int32_t dst_n0 = -1; int32_t dst_m0 = -1; // Destination compute block size left-over int32_t dst_n0_partial = -1; int32_t dst_m0_partial = -1; // Shift-back for the overlapping-min strategy int32_t dst_shift_back = -1; if (!dst->has_tile()) { // If ROOT component, we use ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1 // as tensor format const auto root_window = comp_group.get_root_component()->ckw_component_driver()->get_window(); dst_n0 = root_window.x().step(); dst_m0 = root_window.y().step(); dst_n0_partial = _dst->dimension(0) % dst_n0; dst_m0_partial = (_dst->dimension(1) * _dst->dimension(2)) % dst_m0; dst_shift_back = (dst_n0 - dst_n0_partial) % dst_n0; ckw::TensorSampler sampler_dst; sampler_dst.format(ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1); if (dst_n0_partial == 0) { sampler_dst.address_mode_x(ckw::TensorSamplerAddressModeX::None); } else { sampler_dst.address_mode_x(ckw::TensorSamplerAddressModeX::OverlappingMin); } if (dst_m0_partial == 0) { sampler_dst.address_mode_y(ckw::TensorSamplerAddressModeY::None); } else { sampler_dst.address_mode_y(ckw::TensorSamplerAddressModeY::ClampToBorderMaxOnly); } sampler_dst.address_mode_z(ckw::TensorSamplerAddressModeZ::None); sampler_dst.storage(ckw::TensorStorageType::BufferUint8Ptr); // Declare destination tile ckw::DataType dst_dt = to_ckw(_dst->data_type()); auto tile_dst = writer->declare_tile("dst", ckw::TileInfo(dst_dt, dst_m0, dst_n0)); // Bind tile to the tensor dst->init_virtual_tensor(tile_dst, sampler_dst); } else { // Change dst_n0 and dst_m0 if NOT root component! // ATTENTION: // dst_m0_partial depends on the TensorSamplerFormat dst_n0 = dst->tile().tile_info().width(); dst_m0 = dst->tile().tile_info().height(); dst_n0_partial = _dst->dimension(0) % dst_n0; ckw::TensorSampler sampler_dst = dst->tensor_sampler(); if (sampler_dst.format() == ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1) { dst_m0_partial = (_dst->dimension(1) * _dst->dimension(2)) % dst_m0; } else if (sampler_dst.format() == ckw::TensorSamplerFormat::Dim0_Dim1_Dim2) { dst_m0_partial = _dst->dimension(1) % dst_m0; } // Shift-back for the overlapping-min strategy dst_shift_back = (dst_n0 - dst_n0_partial) % dst_n0; } const auto &tile_dst = dst->tile(); /******************************************************************************** * 4 - Define the compute block parameters CKW constants ********************************************************************************/ // Only now we can declare the N0 and M0 as constant auto const_dst_n0_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_n0}}, ckw::DataType::Int32)); auto const_dst_m0_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_m0}}, ckw::DataType::Int32)); auto const_dst_shift_back_n0_i32 = writer->declare_constant_tile(ckw::ConstantData({{dst_shift_back}}, ckw::DataType::Int32)); /******************************************************************************** * 5 - Define the sampler for the input tensor ********************************************************************************/ if (!src->has_tile()) { // Sampler ckw::TensorSampler sampler_src = dst->tensor_sampler(); auto tile_gid_0 = writer->declare_tile("gid_0", ckw::TileInfo(ckw::DataType::Int32)); auto tile_gid_1 = writer->declare_tile("gid_1", ckw::TileInfo(ckw::DataType::Int32)); auto tile_gid_2 = writer->declare_tile("gid_2", ckw::TileInfo(ckw::DataType::Int32)); writer->op_get_global_id(tile_gid_0, 0); writer->op_get_global_id(tile_gid_1, 1); writer->op_get_global_id(tile_gid_2, 2); auto tile_cout0 = writer->declare_tile("cout0", ckw::TileInfo(ckw::DataType::Int32)); // OFM auto tile_mout0 = writer->declare_tile("mout0", ckw::TileInfo(ckw::DataType::Int32)); // WIDTH or WIDTH x HEIGHT auto tile_mout1 = writer->declare_tile("mout1", ckw::TileInfo(ckw::DataType::Int32)); // HEIGHT or 0 auto tile_bout0 = writer->declare_tile("bout0", ckw::TileInfo(ckw::DataType::Int32)); // BATCH SIZE IDX // Calculate coordinates get_coordinate_from_gws_overlapping_min(writer, tile_cout0, tile_gid_0, const_dst_n0_i32, const_dst_shift_back_n0_i32, const_0_i32); get_coordinate_from_gws(writer, tile_mout0, tile_gid_1, const_dst_m0_i32); // Get the boundary aware coordinates at each global dimension index if (sampler_src.format() == ckw::TensorSamplerFormat::Dim0_Dim1xDim2_1) { writer->op_assign(tile_mout1, const_0_i32); get_coordinate_from_gws(writer, tile_bout0, tile_gid_2, const_pos_1_i32); } else if (sampler_src.format() == ckw::TensorSamplerFormat::Dim0_Dim1_Dim2) { writer->op_binary(tile_mout1, ckw::BinaryOp::Mod, tile_gid_2, const_dst_h_i32); writer->op_binary(tile_bout0, ckw::BinaryOp::Div, tile_gid_2, const_dst_h_i32); } ckw::DataType src_dt = to_ckw(_src->data_type()); auto tile_src = writer->declare_tile("src", ckw::TileInfo(src_dt, dst_m0, dst_n0)); writer->op_load(tile_src, src->tensor(), sampler_src, tile_cout0, tile_mout0, tile_mout1, tile_bout0); // Here, init_virtual_tensor() it is used to bring the tile_src outside the compound statement src->init_virtual_tensor(tile_src, sampler_src); } auto tile_src = src->tile(); /******************************************************************************** * 6 - Extra operations required before writing the main code (optional) ********************************************************************************/ // Not required /******************************************************************************** * 7 - Write the rest of the code ********************************************************************************/ // Only None ConvertPolicy is supported for floating-point data types ckw::ConvertPolicy convert_policy = ckw::ConvertPolicy::None; writer->op_cast(tile_dst, tile_src, convert_policy); ARM_COMPUTE_ERROR_ON_MSG(dst->has_tile() == false, "You must bind a tile before appending another component"); } Window GpuCkwCast::get_window() const { ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized"); TensorShape output_shape = _dst->tensor_shape(); // Collapse Dim 1 (W) and Dim 2 (H) together, leave Dim 0 (C) unchanged // This is in line with the collapsing convention used by operators like Conv2d output_shape.collapse(2U, 1U); constexpr uint32_t vector_size_byte_opencl = 16; const uint32_t num_elems_processed_per_iteration = adjust_vec_size(vector_size_byte_opencl / _dst->element_size(), _dst->dimension(0)); Window win = calculate_max_window(output_shape, Steps(num_elems_processed_per_iteration)); return win; } } // namespace dynamic_fusion } // namespace experimental } // namespace arm_compute